Drawing graphs witmdot

Eleftherios Koutsofios and Stephen North

February 4, 2002

Abstract

dot draws directed graphs as hierarchies. It runs as a command line pro-
gram, web visualization service, or with a compatible graphical interface.

Its features include well-tuned layout algorithms for placing nodes and edge
splines, edge labels, “record” shapes with “ports” for drawing data struc-

tures; cluster layouts; and an underlying file language for stream-oriented
graph tools. Below is a reduced module dependency graph of an SML-NJ
compiler that took 0.98 seconds of user time on a 1.4 Ghz AMD Athlon.

dot User’s Manual, February 4, 2002 2

1 Basic Graph Drawing

dotdraws directed graphs. It reads attributed graph text files and writes drawings,
either as graph files or in a graphics format such as GIF, PNG, SVG or PostScript
(which can be converted to PDF).

dotdraws a graph in four main phases. Knowing this helps you to understand
what kind of layoutdot makes and how you can control them. The layout proce-
dure used bylot relies on the graph being acyclic. Thus, the first step is to break
any cycles which occur in the input graph by reversing the internal direction of
certain cyclic edges. The next step assigns nodes to discrete ranks or levels. In a
top-to-bottom drawing, ranks determiitecoordinates. Edges that span more than
one rank are broken into chains of “virtual” nodes and unit-length edges. The third
step orders nodes within ranks to avoid crossings. The fourth stepXseterdi-
nates of nodes to keep edges short, and the final step routes edge splines. This is
the same general approach as most hierarchical graph drawing programs, based on
the work of Warfield [War77], Carpano [Car80] and Sugiyama [STT81]. We refer
the reader to [GKNV93] for a thorough explanationdufts algorithms.

dot accepts input in th®OT language (cf. Appendix A). This language de-
scribes three kinds of objects: graphs, nodes, and edges. The main (outermost)
graph can be directedigraph) or undirectedyraph . Becausealot makes lay-
outs of directed graphs, all the following examples diggaph . (A separate
layout utility, neatq draws undirected graphs [Nor92].) Within a main graph, a
subgraph defines a subset of nodes and edges.

Figure 1 is an example graph in ti¥OT language. Line 1 gives the graph
name and type. The lines that follow create nodes, edges, or subgraphs, and set
attributes. Names of all these objects may be C identifiers, numbers, or quoted C
strings. Quotes protect punctuation and white space.

A node is created when its name first appears in the file. An edge is created
when nodes are joined by the edge operator In the example, line 2 makes
edges frommainto parse and fromparseto execute Runningdoton this file (call
it graphl.dot)

$ dot -Tps graphl.dot -o graphl.ps

yields the drawing of Figure 2. The command line optidps selects PostScript
(EPSF) outputgraphl.ps may be printed, displayed by a PostScript viewer, or
embedded in another document.

It is often useful to adjust the representation or placement of nodes and edges
in the layout. This is done by setting attributes of nodes, edges, or subgraphs in
the input file. Attributes are name-value pairs of character strings. Figures 3 and 4
illustrate some layout attributes. In the listing of Figure 3, line 2 sets the graph’s

dot User’s Manual, February 4, 2002

1: digraph G {

2 main -> parse -> execute;
3 main -> init;

4. main -> cleanup;

5: execute -> make_string;

6 execute -> printf

7 init -> make_string;

8 main -> printf;

9 execute -> compare;

Figure 1: Small graph

make_string compare

Figure 2: Drawing of small graph

dot User’s Manual, February 4, 2002 4

size to4,4 (ininches). This attribute controls the size of the drawing; if the
drawing is too large, it is scaled as necessary to fit.

Node or edge attributes are set off in square brackets. In line 3, thamaide
is assigned shapmx . The edge in line 4 is straightened by increasingviégght
(the defaultisl). The edge in line 6 is drawn as a dotted line. Line 8 makes edges
from execute tomake_string andprintf . Inline 10 the default edge color
is set tored . This affects any edges created after this point in the file. Line 11
makes a bold edge label@@0 times . Inline 12, nodenake_string is given
a multi-line label. Line 13 changes the default node to be a box filled with a shade
of blue. The nodeompare inherits these values.

2 Drawing Attributes

The complete list of attributes that affect graph drawing is summarized in Tables 1,
2 and 3.

2.1 Node Shapes

Nodes are drawn, by default, wishape=ellipse ,width=.75 , height=.5
and labeled by the node name. Other common shapes inblxiecircle
record andplaintext . A complete list of node shapes is given in Appendix E.
The node shapglaintext is of particularly interest in that it draws a node with-
out any outline, an important convention in some kinds of diagrams. In cases where
the graph structure is of main concern, and especially when the graph is moderately
large, thepoint shape reduces nodes to display minimal content. When drawn, a
node’s actual size is the greater of the requested size and the area needed for its text
label, unlesgixedsize=true , in which case thevidth andheight values
are enforced.

Node shapes fall into two broad categories: polygon-based and recordbased.
All node shapes excepecord andMrecord are considered polygonal, and
are modeled by the number of sides (ellipses and circles being special cases), and
a few other geometric properties. Some of these properties can be specified in

a graph. Ifregular=true , the node is forced to be regular. The parameter
peripheries sets the number of boundary curves drawn. For example, a dou-
blecircle hagperipheries=2 . Theorientation attribute specifies a clock-

wise rotation of the polygon, measured in degrees.

There is a way to implement custom node shapes, ustiage=epsf and theshapefile
attribute, and relying on PostScript output. The details are beyond the scope of this user’s guide.
Please contact the authors for further information.

dot User’s Manual, February 4, 2002

1: digraph G {

2: size ="4,4",

3: main [shape=box]; /* this is a comment */
4. main -> parse [weight=8];

5: parse -> execute;

6: main -> init [style=dotted];

7 main -> cleanup;

8: execute -> { make_string; printf}

9: init -> make_string;

10: edge [color=red]; // so is this

11: main -> printf [style=bold,label="100 times"];
12: make_string [label="make a\nstring"];

13: node [shape=box,style=filled,color=".7 .3 1.0"];
14: execute -> compare;

15: }

Figure 3: Fancy graph

main

Figure 4: Drawing of fancy graph

dot User’s Manual, February 4, 2002 6

The shapgolygon exposes all the polygonal parameters, and is useful for
creating many shapes that are not predefined. In addition to the pararegtdes
peripheries andorientation , mentioned above, polygons are parameter-
ized by number of sidesides , skew anddistortion . skew is a floating
point number (usually between1.0 and1.0) that distorts the shape by slanting
it from top-to-bottom, with positive values moving the top of the polygon to the
right. Thus,skew can be used to turn a box into a parallelografistortion
shrinks the polygon from top-to-bottom, with negative values causing the bottom
to be larger than the topmlistortion turns a box into a trapezoid. A variety of
these polygonal attributes are illustrated in Figures 5 and 6.

Record-based nodes form the other class of node shapes. These include the
shapegecord andMrecord . The two are identical except that the latter has
rounded corners. These nodes represent recursive lists of fields, which are drawn
as alternating horizontal and vertical rows of boxes. The recursive structure is
determined by the nodelabel , which has the following schema:

rlabel — field (|’ field)*
field — boxLabel| " rlabel”
boxLabel — [’<’string’>"][string]

Literal braces, vertical bars and angle brackets must be escaped. Spaces are
interpreted as separators between tokens, so they must be escaped if they are to
appear literally in the text. The first string irb@xLabelgives a name to the field,
and serves as a port name for the box (cf. Section 3.1). The second string is used
as a label for the field; it may contain the same escape sequences as multi-line
labels (cf. Section 2.2. The example of Figures 7 and 8 illustrates the use and some
properties of records.

2.2 Labels

As mentioned above, the default node label is its name. Edges are unlabeled by
default. Node and edge labels can be set explicitly usindaibel attribute as
shown in Figure 4.

Though it may be convenient to label nodes by name, at other times labels
must be set explicitly. For example, in drawing a file directory tree, one might have
several directories namesic , but each one must have a unique node identifier.
The inode number or full path name are suitable unique identifiers. Then the label
of each node can be set to the file name within its directory.

dot User’s Manual, February 4, 2002

hello world

Figure 5: Example of polygonal shapes for nodes

1: digraph G {
2: a->hb > c
3: b > d;
4: a [shape=polygon,sides=5,peripheries=3,color=blue_light,style=filled];
5: ¢ [shape=polygon,sides=4,skew=.4,label="hello world"]
6: d [shape=invtriangle];
7: e [shape=polygon,sides=4,distortion=.7];
8: }
Figure 6: Graph with polygonal shapes
1: digraph structs {
2: node [shape=record];
3: structl [shape=record,label="<f0> left|<f1> mid\ dle|<f2> right"];
4: struct2 [shape=record,label="<f0> one|<fl> two0"];
5: struct3 [shape=record,label="hello\nworld |{ b |{c|<here> d|e}| f}| g | h"];
6: structl -> struct2;
7: structl -> struct3;
8. 1}

Figure 7: Records with nested fields

dot User’s Manual, February 4, 2002 8

Multi-line labels can be created by using the escape sequémcék , \r to
terminate lines that are centered, or left or right justified.

The node shap®diamond, Msquare andMcircle use the attribute®plabel
andbottomlabel to specify additional labels appearing near the top and bottom
of the nodes, respectively.

Graphs and cluster subgraphs may also have labels. Graph labels appear, by
default, centered below the graph. Settiagelloc=t centers the label above
the graph. Cluster labels appear within the enclosing rectangle, in the upper left
corner. The valudabelloc=b moves the label to the bottom of the rectangle.
The settindabeljust=r moves the label to the right.

The default font is 14-point Times-Roman, in black. Other font families,
sizes and colors may be selected using the attrifotéeame , fontsize and
fontcolor . Font names should be compatible with the target interpreter. It is
best to use only the standard font families Times, Helvetica, Courier or Symbol
as these are guaranteed to work with any target graphics language. For example,
Times-Italic , Times-Bold , andCourier are portableAvanteGarde-
DemiOblique isn't.

For bitmap output, such as GIF or JPg&trelies on having these fonts avail-
able during layout. Thdontpath attribute can specify a list of directorfes
which should be searched for the font files. If this is not st will use the
DOTFONTPATH environment variable or, if this is not set, the GDFONTPATH
environment variable. If none of these is shif uses a built-in list.

Edge labels are positioned near the center of the edge. Usually, care is taken to
prevent the edge label from overlapping edges and nodes. It can still be difficult,
in a complex graph, to be certain which edge a label belongs to. tfdberate
attribute is set to true, a line is drawn connecting the label to its edge. Sometimes
avoiding collisions among edge labels and edges forces the drawing to be bigger
than desired. Ifabelfloat=true , dot does not try to prevent such overlaps,
allowing a more compact drawing.

An edge can also specify additional labels, usiegdlabel andtaillabel ,
which are be placed near the ends of the edge. The characteristics of these la-
bels are specified using the attributalselfontname , labelfontsize and
labelfontcolor . These labels are placed near the intersection of the edge and
the node and, as such, may interfere with them. To tune a drawing, the user can set
thelabelangle andlabeldistance attributes. The former sets the angle,
in degrees, which the label is rotated from the angle the edge makes incident with

The escape sequentcl is an internal symbol for node names.
3For Unix-based systems, this is a concatenated list of pathnames, separated by colons. For
Windows-based systems, the pathnames are separated by semi-colons.

dot User’s Manual, February 4, 2002 9

the node. The latter sets a multiplicative scaling factor to adjust the distance that
the label is from the node.

2.3 Graphics Styles

Nodes and edges can specifgaor attribute, with black the default. This is the
color used to draw the node’s shape or the edgecolar value can be a hue-
saturation-brightness triple (three floating point numbers between 0 and 1, sepa-
rated by commas); one of the colors names listed in Appendix G (borrowed from
some version of the X window system); or a red-green-blue (RGB) fripheee
hexadecimal number between 00 and FF, preceded by the character '#). Thus,
the values'orchid" , "0.8396,0.4862,0.8549" and#DA70D6 are three

ways to specify the same color. The numerical forms are convenient for scripts or
tools that automatically generate colors. Color name lookup is case-insensitive and
ignores non-alphanumeric characterswsomgrey andWarm_Grey are equiv-

alent.

We can offer a few hints regarding use of color in graph drawings. First, avoid
using too many bright colors. A “rainbow effect” is confusing. It is better to
choose a narrower range of colors, or to vary saturation along with hue. Sec-
ond, when nodes are filled with dark or very saturated colors, labels seem to be
more readable witliontcolor=white and fontname=Helvetica . (We
also have PostScript functions fdot that create outline fonts from plain fonts.)
Third, in certain output formats, you can define your own color space. For exam-
ple, if using PostScript for output, you can redefimadecolor , edgecolor
or graphcolor in a library file. Thus, to use RGB colors, place the following
line in a filelib.ps

/nodecolor {setrgbcolor} bind def
Use thel command line option to load this file.
dot -Tps -l lib.ps file.dot -0 file.ps

The style attribute controls miscellaneous graphics features of nodes and
edges. This attribute is a comma-separated list of primitives with optional argu-
ment lists. The predefined primitives includelid , dashed , dotted , bold
andinvis . The first four control line drawing in node boundaries and edges
and have the obvious meaning. The valwgs causes the node or edge to be
left undrawn. The style for nodes can also incldiled , diagonals and

“4A fourth form, RGBA, is also supported, which has the same format as RGB with an additional
fourth hexadecimal number specifying alpha channel or transparency information.

dot User’s Manual, February 4, 2002

10

Name Default Values

bottomlabel auxiliary label for nodes odhape M*

color black node shape color

comment any string (format-dependent)

distortion 0.0 node distortion foshape=polygon

fillcolor lightgrey/black node fill color

fixedsize false label text has no affect on node size

fontcolor black type face color

fontname Times-Roman font family

fontsize 14 point size of label

group name of node’s group

height 5 height in inches

label node name any string

layer overlay range all ,idorid:id

orientation 0.0 node rotation angle

peripheries shape-dependent number of node boundaries

regular false force polygon to be regular

shape ellipse node shape; see Section 2.1 and Appendix E

shapefile external EPSF or SVG custom shape file

sides 4 number of sides foshape=polygon

skew 0.0 skewing of node foshape=polygon

style graphics options, e.g. bold, dotted,
filed ;cf. Section 2.3

toplabel auxiliary label for nodes odhape M*

URL URL associated with node (format-dependent)

width .75 width in inches

z 0.0 z coordinate for VRML output

Table 1: Node attributes

dot User’s Manual, February 4, 2002

11

Name Default Values

arrowhead normal style of arrowhead at head end

arrowsize 1.0 scaling factor for arrowheads

arrowtail normal style of arrowhead at tail end

color black edge stroke color

comment any string (format-dependent)

constraint true use edge to affect node ranking

decorate if set, draws a line connecting labels with their edges

dir forward forward , back, both , ornone

fontcolor black type face color

fontname Times-Roman | font family

fontsize 14 point size of label

headlabel label placed near head of edge

headport n,ne,e,se,s,sw,w,nw

headURL URL attached to head label if output formaissnap

label edge label

labelangle -25.0 angle in degrees which head or tail label is rotated off edge
labeldistance 1.0 scaling factor for distance of head or tail label from node
labelfloat false lessen constraints on edge label placement
labelfontcolor black type face color for head and tail labels

labelfontname
labelfontsize
layer

Ihead

Itail

minlen
samehead

sametail
style
taillabel
tailport

tailURL
weight

Times-Roman
14
overlay range

font family for head and tail labels

point size for head and tail labels

all ,idorid:id

name of cluster to use as head of edge

name of cluster to use as tail of edge
minimum rank distance between head and tail
tag for head node; edge heads with the same tag
merged onto the same port
tag for tail node; edge tails with the same tag are me
onto the same port

graphics options, e.gbold, dotted, filled ; cf.
Section 2.3

label placed near tail of edge

n,ne,e,se,s,sw,w,nw

URL attached to tail label if output formatismap
integer cost of stretching an edge

Table 2: Edge attributes

are

dot User’s Manual, February 4, 2002 12

Name Default Values

bgcolor background color for drawing, plus initial fill color

center false center drawing opage

clusterrank local may beglobal ornone

color black for clusters, outline color, and fill color fflicolor not defined

comment any string (format-dependent)

compound false allow edges between clusters

concentrate false enables edge concentrators

fillcolor black cluster fill color

fontcolor black type face color

fonthame Times-Roman | font family

fontpath list of directories to such for fonts

fontsize 14 point size of label

label any string

labeljust left-justified "r” for right-justified cluster labels

labelloc top "r" for right-justified cluster labels

layers id:id:id...

margin 5 margin included irpage, inches

mclimit 1.0 scale factor for mincross iterations

nodesep .25 separation between nodes, in inches.

nslimit if set tof, bounds network simplex iterations (number of nodes
when setting x-coordinates

nslimitl if set tof, bounds network simplex iterations (number of nodes
when ranking nodes

ordering if out out edge order is preserved

orientation portrait if rotate is not used and the value lendscape , use landscape
orientation

page unit of paginatione.g."8.5,11"

pagedir BL traversal order of pages

quantum if quantum ¢, 0.0, node label dimensions will be rounded to integral
multiples ofquantum

rank same, min, max, source or sink

rankdir B LR (left to right) orTB (top to bottom)

ranksep .75 separation between ranks, in inches.

ratio approximate aspect ratio desirdédl, orauto

remincross if true and there are multiple clusters, re-run crossing minimization

rotate If 90, set orientation to landscape

samplepoints 8 number of points used to represent ellipses and circles on output (cf.
Appendix C

searchsize 30 maximum edges with negative cut values to check when looking for a
minimum one during network simplex

size maximum drawing size, in inches

style graphics options, e.dilled for clusters

URL URL associated with graph (format-dependent)

Table 3: Graph attributes

dot User’s Manual, February 4, 2002 13

rounded . filled shades inside the node using the cdilbzolor . If this

is not set, the value afolor is used. If this also is unset, light greig used as the
default. Thediagonals style causes short diagonal lines to be drawn between
pairs of sides near a vertex. Trmunded style rounds polygonal corners.

User-defined style primitives can be implemented as custom PostScript proce-
dures. Such primitives are executed insidegsave context of a graph, node,
or edge, before any of its marks are drawn. The argument lists are translated to
PostScript notation. For example, a node vatjle="setlinewidth(8)"
is drawn with a thick outline. Heresetlinewidth is a PostScript built-in, but
user-defined PostScript procedures are called the same way. The definition of these
procedures can be given in a library file loaded usingas shown above.

Edges have dir attribute to set arrowheadslir may beforward (the
default),back , both , ornone. This refers only to where arrowheads are drawn,
and does not change the underlying graph. For example, sditifipck causes
an arrowhead to be drawn at the tail and no arrowhead at the head, but it does not
exchange the endpoints of the edge. The attribaesvhead andarrowtail
specify the style of arrowhead, if any, which is used at the head and tail ends of
the edge. Allowed values arermal , inv , dot , invdot , odot , invodot
andnone (cf. Appendix F). The attributarrowsize specifies a multiplica-
tive factor affecting the size of any arrowhead drawn on the edge. For example,
arrowsize=2.0 makes the arrow twice as long and twice as wide.

In terms of style and color, clusters act somewhat like large box-shaped nodes,
in that the cluster boundary is drawn using the clusteo®r attribute and, in
general, the appearance of the cluster is affectesitiiie , color andfillcolor
attributes.

If the root graph has agcolor attribute specified, this color is used as the
background for the entire drawing, and also serves as the default fill color.

2.4 Drawing Orientation, Size and Spacing

Two attributes that play an important role in determining the sizedwftalrawing
arenodesep andranksep . The first specifies the minimum distance, in inches,
between two adjacent nodes on the same rank. The second deals with rank sepa-
ration, which is the minimum vertical space between the bottoms of nodes in one
rank and the tops of nodes in the next. Taeksep attribute sets the rank separa-

tion, ininches. Alternatively, one can hargnksep=equally . This guarantees

that all of the ranks are equally spaced, as measured from the centers of nodes on
adjacent ranks. In this case, the rank separation between two ranks is at least the

5The default is black if the output format is MIF, or if the shapedént .

dot User’s Manual, February 4, 2002 14

default rank separation. As the two usegarfiksep are independent, both can
be set at the same time. For exampéaksep="1.0 equally" causes ranks
to be equally spaced, with a minimum rank separation of 1 inch.

Often a drawing made with the default node sizes and separations is too big
for the target printer or for the space allowed for a figure in a document. There
are several ways to try to deal with this problem. First, we will review tmi/
computes the final layout size.

A layout is initially made internally at its “natural” size, using default settings
(unlessratio=compress was set, as described below). There is no bound on
the size or aspect ratio of the drawing, so if the graph is large, the layout is also
large. If you don't specifsize orratio , then the natural size layout is printed.

The easiest way to control the output size of the drawing is teizet" z, y"
in the graph file (or on the command line usig). This determines the size of the
final layout. For examplesize="7.5,10" fits on an 8.5x11 page (assuming
the default page orientation) no matter how big the initial layout.

ratio also affects layout size. There are a number of cases, depending on the
settings ofsize andratio

Case lratio was not set. If the drawing already fits within the giveére |,
then nothing happens. Otherwise, the drawing is reduced uniformly enough to
make the critical dimension fit.

If ratio was set, there are four subcases.

Case 2a.lf ratio= z wherez is a floating point number, then the drawing
is scaled up in one dimension to achieve the requested ratio expressed as drawing
height /width. For exampleratio=2.0 makes the drawing twice as high as it
is wide. Then the layout is scaled usisige as in Case 1.

Case 2b.If ratio=fill andsize= x,y was set, then the drawing is scaled
up in one dimension to achieve the ragior. Then scaling is performed as in Case
1. The effect is that all of the bounding box givendige is filled.

Case 2clf ratio=compress andsize= x,y was set, then the initial layout
is compressed to attempt to fit it in the given bounding box. This trades off lay-
out quality, balance and symmetry in order to pack the layout more tightly. Then
scaling is performed as in Case 1.

Case 2d.If ratio=auto and thepage attribute is set and the graph cannot
be drawn on a single page, theiae is ignored andlotcomputes an “ideal” size.

In particular, the size in a given dimension will be the smallest integral multiple
of the page size in that dimension which is at least half the current size. The two
dimensions are then scaled independently to the new size.

If rotate=90 s set, ororientation=landscape , then the drawing is
rotated90° into landscape mode. ThE axis of the layout would be along thé
axis of each page. This does not affdct's interpretation ofsize , ratio or

dot User’s Manual, February 4, 2002 15

page .

At this point, if page is not set, then the final layout is produced as one page.

If page==z,y is set, then the layout is printed as a sequence of pages which
can tiled or assembled into a mosaic. Common settingpage="8.5,11" or
page="11,17" . These values refer to the full size of the physical device; the
actual area used will be reduced by the margin settings. (For printer output, the
default is 0.5 inches; for bitmap-output, theandY” margins are 10 and 2 points,
respectively.) For tiled layouts, it may be helpful to set smaller margins. This can
be done by using thmargin attribute. This can take a single number, used to set
both margins, or two numbers separated by a comma to set #mely margins
separately. As usual, units are in inches. Although one camasgin=0 , un-
fortunately, many bitmap printers have an internal hardware margin that cannot be
overridden.

The order in which pages are printed can be controlled byptgedir at-
tribute. Output is always done using a row-based or column-based ordering, and
pagedir is setto atwo-letter code specifying the major and minor directions. For
example, the default iBL, specifying a bottom-to-topB) major order and a left-
to-right (L) minor order. Thus, the bottom row of pages is emitted first, from left
to right, then the second row up, from left to right, and finishing with the top row,
from left to right. The top-to-bottom order is representeditgnd the right-to-left
order byR.

If center=true and the graph can be output on one page, using the default
page size of 8.5 by 11 inchesphge is not set, the graph is repositioned to be
centered on that page.

A common problem is that a large graph drawn at a small size yields unreadable
node labels. To make larger labels, something has to give. There is a limit to the
amount of readable text that can fit on one page. Often you can draw a smaller
graph by extracting an interesting piece of the original graph before rumiaoig
We have some tools that help with this.

sccmap decompose the graph into strongly connected components
tred compute transitive reduction (remove edges implied by transitivity)

gpr graph processor to select nodes or edges, and contract or remove the rest of
the graph

unflatten improve aspect ratio of trees by staggering the lengths of leaf edges
With this in mind, here are some thing to try on a given graph:

1. Increase the nodentsize

dot User’s Manual, February 4, 2002 16

Use smalleranksep andnodesep .
Useratio=auto

Useratio=compress and give a reasonabsize .

a 0 w0 BN

A sans serif font (such as Helvetica) may be more readable than Times when
reduced.

2.5 Node and Edge Placement

Attributes indot provide many ways to adjust the large-scale layout of nodes and
edges, as well as fine-tune the drawing to meet the user’'s needs and tastes. This
section discusses these attribites

Sometimes it is natural to make edges point from left to right instead of from
top to bottom. Ifrankdir=LR in the top-level graph, the drawing is rotated
in this way. TB (top to bottom) is the default. BT seems potentially useful for
drawing upward-directed graphs, but hasn’t been implemented. In some graphs,
you could achieve the same effect by reversing the endpoints of edges and setting
theirdir=back .) We note that the setting cankdir is complementary to how
the final drawing may be rotated loyientation or rotate

In graphs with time-lines, or in drawings that emphasize source and sink nodes,
you may need to constrain rank assignments. rEin& of a subgraph may be set
to samerank , minrank , source , maxrank or sink . A value samerank
causes all the nodes in the subgraph to occur on the same rank. Ihserémk |,
all the nodes in the subgraph are guaranteed to be on a rank at least as small as
any other node in the layolutThis can be made strict by settinrgnk=source
which forces the nodes in the subgraph to be on some rank strictly smaller than
the rank of any other nodes (except those also specifiedibsank or source
subgraphs). The valuesaxrank orsink play an analogous role for the maxi-
mum rank. Note that these constraints induce equivalence classes of nodes. If one
subgraph forces nodésandB to be on the same rank, and another subgraph forces
nodesC andB to share a rank, then all nodes in both subgraphs must be drawn on
the same rank. Figures 9 and 10 illustrate using subgraphs for controlling rank
assignment.

In some graphs, the left-to-right ordering of nodes is important. If a subgraph
hasordering=out , then out-edges within the subgraph that have the same talil

SFor completeness, we note titaitalso provides access to various parameters which play techni-
cal roles in the layout algorithms. These includelimit , nslimit , nslimitl , remincross
andsearchsize

"Recall that the minimum rank occurs at the top of a drawing.

dot User’s Manual, February 4, 2002 17

node wll fan-out from left to right in their order of creation. (Also note that flat
edges involving the head nodes can potentially interfere with their ordering.)

There are many ways to fine-tune the layout of nodes and edges. For example,
if the nodes of an edge both have the sagneup attribute, dot tries to keep
the edge straight and avoid having other edges cross itwEight of an edge
provides another way to keep edges straight. An edgeight suggests some
measure of an edge’s importance; thus, the heavier the weight, the closer together
its nodes should belot causes edges with heavier weights to be drawn shorter and
straighter.

Edge weights also play a role when nodes are constrained to the same rank.
Edges with non-zero weight between these nodes are aimed across the rank in
the same direction (left-to-right, or top-to-bottom in a rotated drawing) as far as
possible. This fact may be exploited to adjust node ordering by placing invisible
edges gtyle="invis") where needed.

The end points of edges adjacent to the same node can be constrained using the
samehead andsametail attributes. Specifically, all edges with the same head
and the same value shmehead are constrained to intersect the head node at the
same point. The analogous property holds for tail nodessantktail

During rank assignment, the head node of an edge is constrained to be on a
higher rank than the tail node. If the edge lasistraint=false , however,
this requirement is not enforced.

In certain circumstances, the user may desire that the end points of an edge
never get too close. This can be obtained by setting the edgelen attribute.

This defines the minimum difference between the ranks of the head and tail. For
example, ifminlen=2 , there will always be at least one intervening rank between
the head and tail. Note that this is not concerned with the geometric distance be-
tween the two nodes.

Fine-tuning should be approached cautioustjot works best when it can
makes a layout without much “help” or interference in its placement of individual
nodes and edges. Layouts can be adjusted somewhat by increasiveighe of
certain edges, or by creating invisible edges or nodes tiig=invis , and
sometimes even by rearranging the order of nodes and edges in the file. But this can
backfire because the layouts are not necessarily stable with respect to changes in
the input graph. One last adjustment can invalidate all previous changes and make
a very bad drawing. A future project we have in mind is to combine the mathemat-
ical layout techniques afot with an interactive front-end that allows user-defined
hints and constraints.

dot User’s Manual, February 4, 2002 18

3 Advanced Features

3.1 Node Ports

A node port is a point where edges can attach to a node. (When an edge is not
attached to a port, it is aimed at the node’s center and the edge is clipped at the
node’s boundary.)

Simple ports can be specified by using theadport andtailport at-
tributes. These can be assigned one of the 8 compass points'ne” , "e" ,

"se" ,"s" ["sw" ,"w" or"nw" . The end of the node will then be aimed at that
position on the node. Thus, t&ilport=se , the edge will connect to the tail
node at its southeast “corner”.

Nodes with aecord shape use the record structure to define ports. As noted
above, this shape represents a record as recursive lists of boxes. If a box defines
a port name, by using the constructport. name > in the box label, the cen-
ter of the box can be used a port. (By default, the edge is clipped to the box’s
boundary.) This is done by modifying the node name with the port name, using the
syntaxnodename port_name as part of an edge declaration. Figure 11 illustrates
the declaration and use of port names in record nodes, with the resulting drawing
shown in Figure 12.

DISCLAIMER: At present, simple ports don’'t work as advertised, even
when they should. There is also the case where we might not want them to
work, e.g., when the tailport=n and the headport=s. Finally, in theory, dot
should be able to allow both types of ports on an edge, since the notions are
orthogonal. There is still the question as to whether the two syntaxes could
be combined, i.e., treat the compass points as reserved port names, and allow
nodename:portname:compassname.

Figures 13 and 14 give another example of the use of record nodes and ports.
This repeats the example of Figures 7 and 8 but now using ports as connectors
for edges. Note that records sometimes look better if their input height is set to a
small value, so the text labels dominate the actual size, as illustrated in Figure 11.
Otherwise the default node sizer'§ by .5) is assumed, as in Figure 14. The
example of Figures 15 and 16 uses left-to-right drawing in a layout of a hash table.

3.2 Clusters

A cluster is a subgraph placed in its own distinct rectangle of the layout. A sub-
graph is recognized as a cluster when its name has the piefiter . (If the
top-level graph haslusterrank=none , this special processing is turned off).

dot User’s Manual, February 4, 2002 19

Labels, font characteristics and tlabelloc attribute can be set as they would
be for the top-level graph, though cluster labels appear above the graph by default.
For clusters, the label is left-justified by defaultlabeljust="r" , the label is
right-justified. Thecolor attribute specifies the color of the enclosing rectangle.
In addition, clusters may hawyle="filled" , iIn which case the rectangle
is filled with the color specified bfillcolor before the cluster is drawn. (If
fillcolor is not specified, the cluster®lor attribute is used.)

Clusters are drawn by a recursive technique that computes a rank assignment
and internal ordering of nodes within clusters. Figure 17 through 19 are cluster
layouts and the corresponding graph files.

dot User’s Manual, February 4, 2002

Figure 8: Drawing of records

left | middle | right
\‘
ne | two hello -
one world

20

dot User’s Manual, February 4, 2002

digraph asde91 {
ranksep=.75; size = "7.5,7.5";

{

node [shape=plaintext, fontsize=16];
/* the time-line graph */
past -> 1978 -> 1980 -> 1982 -> 1983 -> 1985 -> 1986 ->

1987 -> 1988 -> 1989 -> 1990 -> “future";

/* ancestor programs */
"Bourne sh"; "make"; "SCCS"; "yacc"; "cron"; "Reiser cpp";
"Cshell*; "emacs"; "build"; "vi"; "<curses>"; "RCS"; "C*";

}

{ rank = same;
"Software IS"; "Configuration Mgt"; "Architecture & Libraries";
"Process";

s

node [shape=box];

rank
rank
rank
rank
rank
rank
rank
rank

same; "past”; "SCCS"; "make"; "Bourne sh"; "yacc"; “"cron"; }
same; 1978; "Reiser cpp"; "Cshell"; }

same; 1980; "build"; "emacs"; "vi'; }

same; 1982; "RCS"; "<curses>"; "IMX"; "SYNED"; }

same; 1983; "ksh"; "IFS"; "TTU"; }

same; 1985; "nmake"; "Peggy"; }

same; 1986; "C*'; "ncpp"; "ksh-i"; "<curses-i>"; "PG2"; }

same; 1987; "Ansi cpp"; "nmake 2.0"; "3D File System"; "fdelta”;

"DAG"; "CSAS"}

{ rank = same; 1988; "CIA"; "SBCS"; "ksh-88"; "PEGASUS/PML"; "PAX";
"backtalk"; }

{ rank = same; 1989; "CIA++"; "APP"; "SHIP"; "DataShare"; "ryacc";
"Mosaic"; }

{ rank = same; 1990; "libft"; "CoShell"; "DIA"; "IFS-i"; "kyacc"; "sfio";
"yeast"; "ML-X"; "DOT"; }

{ rank = same; "future"; "Adv. Software Technology"; }

"PEGASUS/PML" -> "ML-X";
"SCCS" -> "nmake";
"SCCS" -> "3D File System";

"SCCS"

> "RCS";

"make" -> "nmake";

"make"

->

"build";

Figure 9: Graph with constrained ranks

21

dot User’s Manual, February 4, 2002

Figure 10: Drawing with constrained ranks

1: digraph g {

2. node [shape = record,height=.1];

3: nodeO[label = "<f0> |<f1> G|<f2> "];
4: nodelflabel = "<f0> |<f1> E|<f2> "]
5: node2[label = "<f0> |<fl> B|<f2> "];
6: node3[label = "<f0> |<f1> F|<f2> "];
7: noded[label = "<f0> |<f1> R|<f2> "];
8: node5[label = "<f0> [<fl> H|<f2> "];
9: node6[label = "<f0> |<f1> Y|<f2> "]
10: node7[label = "<f0> |<fl> A|<f2> "];
11: node8[label = "<f0> |<fl> C|<f2>];
12: "node0":f2 -> "node4":f1;

13: "node0":f0 -> "nodel":f1;

14: "nodel™:f0 -> "node2":f1;

15: "nodel"™:f2 -> "node3":f1;

16: "node2":f2 -> "node8":f1;

17: "node2"™:f0 -> "node7":f1;

18: "node4":f2 -> "node6":f1;

19: "node4":f0 -> "nodeb5":f1;

20: }

Figure 11: Binary search tree using records

dot User’s Manual, February 4, 2002

Figure 12: Drawing of binary search tree

digraph structs {
node [shape=record];
structl [shape=record,label="<f0> left|<f1> middle|<f2> right"];
struct2 [shape=record,label="<f0> one|<fl> two0"];
struct3 [shape=record,label="hello\nworld |{ b |{c|<here> dl|e}| f}| g | h'];
structl:f1 -> struct2:f0;
structl:f2 -> struct3:here;

N RARONE

Figure 13: Records with nested fields (revisited)

left | middle | right

hello
one | two world LS dl{e|g|h

Figure 14: Drawing of records (revisited)

dot User’s Manual, February 4, 2002

1: digraph G {

2: nodesep=.05;

3: rankdir=LR;

4: node [shape=record,width=.1,height=.1];

5:

6: nodeO [label = "<f0> |<fl1> |<f2> |<f3> |<f4> |<f5> |<f6> | ",height=2.5];
7 node [width = 1.5];

8: nodel [label = "{<n> nl14 | 719 |<p> }"];

9: node2 [label = "{<n> al | 805 |<p> }'];

10: node3 [label
11: node4 [label
12: node5 [label
13: node6 [label
14: node7 [label

"{<n>i9 | 718 |<p> }';

{<n>e5 | 989 |<p> }];
"{<n> t20 | 959 |<p> }'T ;
"{<n> 015 | 794 |<p> }1 ;
"{<n> s19 | 659 |<p> }] ;

16: node0:f0 -> nodel:n;
17: node0:f1 -> node2:n;
18: node0:f2 -> node3:n;
19: nodeO0:f5 -> node4:n;
20: node0:f6 -> node5:n;
21: node2:p -> node6:n;
22: node4:p -> node7:n;

Figure 15: Hash table graph file

(o4 [709]]
F—{at [805 | F—fo15][794] |
| —={io [718

| {980 [F—{s19]6s9]
e w]

Figure 16: Drawing of hash table

dot User’s Manual, February 4, 2002

digraph G {
subgraph cluster0 {

}

node [style=filled,color=white];
style=filled,;

color=lightgrey;

a0 -> al -> a2 -> a3;
label = "process #1"

subgraph clusterl {

}

node [style=filled];

b0 -> bl -> b2 -> Db3;
label = "process #2"
color=blue

start -> a0;
start -> bO;

al
b2
a3
a3
b3

-> b3;
-> agj;
-> ao;
-> end;
-> end;

start [shape=Mdiamond];
end [shape=Msquare];

process #1

a0

a3

N\

rocess #2

b0

bl

b2

b3

)

end

Figure 17: Process diagram with clusters

25

dot User’s Manual, February 4, 2002 26

If the top-level graph has theompound attribute set to truedot will allow
edges connecting nodes and clusters. This is accomplished by an edge defining
anlhead orltail attribute. The value of these attributes must be the name of
a cluster containing the head or tail node, respectively. In this case, the edge is
clipped at the cluster boundary. All other edge attributes, sucrrasvhead
ordir , are applied to the truncated edge. For example, Figure 20 shows a graph
using thecompound attribute and the resulting diagram.

3.3 Concentrators

Settingconcentrate=true on the top-level graph enables an edge merging
technique to reduce clutter in dense layouts. Edges are merged when they run
parallel, have a common endpoint and have length greater than 1. A beneficial
side-effect in fixed-sized layouts is that removal of these edges often permits larger,
more readable labels. While concentratorglot look somewhat like Newbery’s
[New89], they are found by searching the edges in the layout, not by detecting
complete bipartite graphs in the underlying graph. Thusdbieapproach runs
much faster but doesn't collapse as many edges as Newbery’s algorithm.

4 Command Line Options

By default,dot operates in filter mode, reading a graph fretdin , and writing
the graph orstdout in the DOT format with layout attributes appendedlot
supports a variety of command-line options:

-T formatsets the format of the output. Allowed values formatare:

canon Prettyprint input; no layout is done.

dot Attributed DOT. Prints input with layout information attached as attributes,
cf. Appendix C.

fig FIG output.

gd GD format. This is the internal format used by the GD Graphics Library. An
alternate format igd2.

gif GIF output.
hpgl HP-GL/2 vector graphic printer language for HP wide bed plotters.

imap Produces HTML map files for client and server-side image maps. This
can be combined with a graphical form of the output, e.g., usligif or

dot User’s Manual, February 4, 2002 27

l:digraph G {
size="8,6"; ratio=fill; node[fontsize=24];

2

3

4: ciafan->computefan; fan->increment; computefan->fan; stringdup->fatal;
5: main->exit; main->interp_err; main->ciafan; main->fatal; main->malloc;
6: main->strcpy; main->getopt; main->init_index; main->strlen; fan->fatal;
7: fan->ref; fan->interp_err; ciafan->def; fan->free; computefan->stdprintf;
8: computefan->get_sym_fields; fan->exit; fan->malloc; increment->strcmp;
9: computefan->malloc; fan->stdsprintf; fan->strlen; computefan->strcmp;
10: computefan->realloc; computefan->strlen; debug->sfprintf; debug->strcat;
11: stringdup->malloc; fatal->sfprintf; stringdup->strcpy; stringdup->strlen;
12: fatal->exit;

13:

14: subgraph "cluster_error.h" { label="error.h"; interp_err; }

15:

16: subgraph “cluster_sfio.h" { label="sfio.h"; sfprintf; }

17:

18: subgraph "cluster_ciafan.c" { label="ciafan.c"; ciafan; computefan;
19: increment; }

20:

21: subgraph "cluster_util.c" { label="util.c"; stringdup; fatal; debug; }

23: subgraph “cluster_query.h" { label="query.h"; ref; def; }

25: subgraph “cluster_field.h" { get_sym_fields; }

27: subgraph "cluster_stdio.h" { label="stdio.h"; stdprintf; stdsprintf; }

29: subgraph “cluster_<libc.a>" { getopt; }

31: subgraph “cluster_stdlib.h" { label="stdlib.h"; exit; malloc; free; realloc; }
33: subgraph “cluster_main.c" { main; }

35: subgraph “cluster_index.h" { init_index; }

37: subgraph "cluster_string.h" { label="string.h"; strcpy; strlen; strcmp; strcat; }

Figure 18: Call graph file

dot User’s Manual, February 4, 2002

oo

Figure 19: Call graph with labeled clusters

digraph G {
compound=true;
subgraph clusterO {
a -> b;
a -> ¢
b -> d;
c ->d
}
subgraph clusterl {
e -> g;
e > f;

\Y

f [Ihead=clusterl];

g [ltail=clusterQ,
Ihead=clusterl];

e [ltail=cluster0];

> h’

O o T
1
\

(¢}
\

o

o

NIVA'R!
<,
(O D

Figure 20: Graph with edges on clusters

dot User’s Manual, February 4, 2002 29

-Tjpg , in web pages to attach links to nodes and edges. The fasmap
is a predecessor of thmap format.

ipg JPEG outputjpeg is a synonym fojpg .

mif FrameMaker MIF format. In this format, graphs can be loaded into FrameMaker
and edited manually. MIF is limited to 8 basic colors.

mp MetaPost output.
pcl PCL-5 output for HP laser writers.
pic PIC output.

plain Simple, line-based ASCII format. Appendix B describes this output. An
alternate format iplain-ext , which provides port names on the head and
tail nodes of edges.

png PNG (Portable Network Graphics) output.
ps PostScript (EPSF) output.

ps2 PostScript (EPSF) output with PDF annotations. Itis assumed that this output
will be distilled into PDF.

svg SVG output. The alternate forsvgz produces compressed SVG.
viml VRML output.
vix VTX format for r Confluents’s Visual Thought.

wbmp Wireless BitMap (WBMP) format.

-Gnamevaluesets a graph attribute default value. Often it is convenient to set
size, pagination, and related values on the command line rather than in the graph
file. The analogous flagdN or -E set default node or edge attributes. Note that
file contents override command line arguments.

- libfile specifies a device-dependent graphics library file. Multiple libraries
may be given. These names are passed to the code generator at the beginning of
output.

-0 outfilewrites output into fileoutfile

-V requests verbose output. In processing large layouts, the verbose messages
may give some estimate dbts progress.

-V prints the version number and exits.

dot User’s Manual, February 4, 2002 30

5 Miscellaneous

In the top-level graph heading, a graph may be declarstliet digraph
This forbids the creation of self-arcs and multi-edges; they are ignored in the input
file.

Nodes, edges and graphs may havgRiattribute. In certain output formats
(ps2, imap, ismap or svg), this information is integrated in the output so that
nodes, edges and clusters become active links when displayed with the appropriate
tools. Typically, URLs attached to top-level graphs serve as base URLS, support-
ing relative URLs on components. When the output formatriap , a similar
processing takes place with theadURL andtaillURL attributes.

For certain formatsgs, fig , mif , mp vix or svg), comment attributes
can be used to embed human-readable notations in the output.

6 Conclusions

dotproduces pleasing hierarchical drawings and can be applied in many settings.
Since the basic algorithms afot work well, we have a good basis for fur-

ther research into problems such as methods for drawing large graphs and on-line

(animated) graph drawing.

7 Acknowledgments

We thank Emden Gansner and Phong Vo for their advice about graph drawing al-
gorithms and programming. The graph library uses Phong’s splay tree dictionary
library. Also, the users oflag the predecessor afot, gave us many good sug-
gestions. Emden Gansner, Guy Jacobson, and Randy Hackbarth reviewed earlier
drafts of this manual, and Emden contributed substantially to the current revision.
John Ellson wrote the generalized polygon shape and spent considerable effort to
make it robust and efficient. He also wrote the GIF and ISMAP generators and
other tools to bringgraphvizto the web.

References

[Car80] M. Carpano. Automatic display of hierarchized graphs for computer
aided decision analysi$EEE Transactions on Software Engineering
SE-12(4):538-546, April 1980.

dot User’s Manual, February 4, 2002 31

[GKNV93] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-Phong Vo. A Technique for Drawing Directed GrapHEEE
Trans. Sofware Eng19(3):214-230, May 1993.

[New89] Frances J. Newbery. Edge Concentration: A Method for Clustering
Directed Graphs. I2nd International Workshop on Software Con-
figuration Managementpages 76-85, October 1989. Published as
ACM SIGSOFT Software Engineering Notes, vol. 17, ndNavem-
ber 1989.

[Noro2] Stephen C. North. Neato User’s Guide. Technical Report 59113-
921014-14TM, AT&T Bell Laboratories, Murray Hill, NJ, 1992.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Under-
standing of Hierarchical System StructurelEEE Transactions on
Systems, Man, and Cyberneti&C-11(2):109-125, February 1981.

[War77] John Warfield. Crossing Theory and Hierarchy MapplB&E Trans-
actions on Systems, Man, and Cybernet®§IC-7(7):505-523, July
1977.

dot User’s Manual, February 4, 2002 32

A Graph File Grammar

The following is an abstract grammar for tB©T language. Terminals are shown

in bold font and nonterminals in italics. Literal characters are given in single
quotes. Parentheses (and) indicate grouping when needed. Square brackets [
and] enclose optional items. Vertical baiseparate alternatives.

graph — [strict] (digraph | graph)id " stmt-list”

stmt-list — [stmt[’;’][stmt-list]]

stmt — attr-stmt| node-stmt edge-stmt subgraph| id '=" id
attr-stmt — (graph | node| edgeattr-list

attr-list — ['[alist]T [attr-list]

a-list — id’=id[)][attr-list]

node-stmt — node-id[attrs-list]

node-id — id [port]

port — port-location[port-angle]| port-angle[port-location]
port-location — " id | ’(C id’;id’)

port-angle — '@ id

edge-stmt — (node-id| subgraph edgeRH$attr-list]

edgeRHS — edgeop(node-id| subgraph [edgeRHS

subgraph — [subgraphid]” stmt-list” | subgraphid

An id is any alphanumeric string not beginning with a digit, but possibly in-
cluding underscores; or a number; or any quoted string possibly containing escaped
quotes.

An edgeops -> in directed graphs and in undirected graphs.

The language supports C++-style commefits*/ and// .

Semicolons aid readability but are not required except in the rare case that a
named subgraph with no body immediate precedes an anonymous subgraph, be-
cause under precedence rules this sequence is parsed as a subgraph with a heading
and a body.

Complex attribute values may contain characters, such as commas and white
space, which are used in parsing BT language. To avoid getting a parsing
error, such values need to be enclosed in double quotes.

dot User’s Manual, February 4, 2002 33

B Plain Output File Format (-Tplain)

The “plain” output format oflot lists node and edge information in a simple, line-
oriented style which is easy to parse by front-end components. All coordinates and
lengths are unscaled and in inches.
The first line is:

graph scalefactor width height
The width and heightvalues give the width and the height of the drawing; the
lower-left corner of the drawing is at the origin. Tkealefactorindicates how
much to scale all coordinates in the final drawing.
The next group of lines lists the nodes in the format:

node name X y xsize ysize label style shape color fillcolor
The nameis a unique identifier. If it contains whitespace or punctuation, it is
quoted. Thecandy values give the coordinates of the center of the nodeyttith
andheightgive the width and the height. The remaining parameters provide the
node’slabel ,style ,shape, color andfillcolor attributes, respectively.
If the node does not havestyle attribute,"solid" is used.
The next group of lines lists edges:

edge tail headn x1 y1 x2 42 ... 2, Yy, [1abel IX ly] style color
n is the number of coordinate pairs that follow as B-spline control points. If the
edge is labeled, then the label text and coordinates are listed next. The edge de-
scription is completed by the edgessyle andcolor . As with nodes, if a
style is not defined;solid" is used.
The last line is always:

stop

dot User’s Manual, February 4, 2002 34

C Attributed DOT Format (-Tdot)

This is the default output format. It reproduces the input, along with layout infor-
mation for the graph. Coordinate values increase up and to the right. Positions
are represented by two integers separated by a comma, representiiqtitty”
coordinates of the location specified in points (1/72 of an inch). A position refers
to the center of its associated object. Lengths are given in inches.

A bb attribute is attached to the graph, specifying the bounding box of the
drawing. If the graph has a label, its position is specified byghattribute.

Each node getpos, width andheight attributes. If the node is a record,
the record rectangles are given in tteets attribute. If the node is polygonal
and thevertices attribute is defined in the input graph, this attribute contains
the vertices of the node. The number of points produced for circles and ellipses is
governed by theamplepoints attribute.

Every edge is assignedpos attribute, which consists of a list &n + 1
locations. These are B-spline control points: poift:, p2, p3 are the first Bezier
spline, p3, p4, p5, pe are the second, etc. Currently, edge points are listed top-to-
bottom (or left-to-right) regardless of the orientation of the edge. This may change.

In the pos attribute, the list of control points might be preceded by a start
pointps and/or an end point.. These have the usual position representation with a
"s," or"e,” prefix, respectively. A start pointis presentif there is an arrow at
In this case, the arrow is fropy to ps, wherep, is actually on the node’s boundary.
The length and direction of the arrowhead is given by the vegtor pg). If there
is no arrow,pg is on the node’s boundary. Similarly, the pojt designates an
arrow at the other end of the edge, connecting to the last spline point.

If the edge has a label, the label position is giveipin

dot User’s Manual, February 4, 2002 35

D Layers

dothas a feature for drawing parts of a single diagram on a sequence of overlapping
“layers.” Typically the layers are overhead transparencies. To activate this feature,

one must set the top-level graplegers attribute to a list of identifiers. A node

or edge can then be assigned to a layer or range of layers usiaggts attribute..

all is areserved name for all layers (and can be used at either end of a range, e.g
design:all orall:code). For example:

layers = "spec:design:code:debug:ship";
node90 [layer = "code'];

node9l [layer = "design:debug'];
node90 -> node9l [layer = "all"];
node92 [layer = "all:.code"];

In this graphnode91l is in layersdesign , code anddebug, whilenode92 is
in layersspec , design andcode .

In a layered graph, if a node or edge has no layer assignment, but incident
edges or nodes do, then its layer specification is inferred from these. To change the
default so that nodes and edges with no layer appear on all layers, insert near the
beginning of the graph file:

node [layer=all];
edge [layer=all];

There is currently no way to specify a set of layers that are not a continuous

range.
When PostScript output is selected, the color sequence for layers is set in the
array layercolorseq . This array is indexed starting from 1, and every ele-

ment must be a 3-element array which can interpreted as a color coordinate. The
adventurous may learn further from readitaf's PostScript output.

dot User’s Manual, February 4, 2002 36

O O O

E Node Shapes

box polygon ellipse circle
© A plaintext
°
point triangle plaintext
diamond trapezium parallelogram house
hexagon octagon doublecircle doubleoctagon
tripleoctagon invtriangle invtrapezium invhouse
C] Z\ @
N/
Mdiamond Msquare Mcircle
/
! 31| 31
2 (2 212
3 32| (3 32

record Mrecord

dot User’s Manual, February 4, 2002

F Arrowhead Types

:

normal dot

invdot

be

none

37

—(D

odot

—(_

invodot

dot User’s Manual, February 4, 2002

G Color Names

Whites
antiquewhite[1-4]
azure[1-4]
bisque[1-4]
blanchedalmond
cornsilk[1-4]
floralwhite
gainsboro
ghostwhite
honeydew[1-4]
ivory[1-4]
lavender
lavenderblush[1-4]
lemonchiffon[1-4]
linen

mintcream
mistyrose[1-4]
moccasin
navajowhite[1-4]
oldlace
papayawhip
peachpuff[1-4]
seashell[1-4]
snow[1-4]
thistle[1-4]
wheat[1-4]

white
whitesmoke

Greys
darkslategray[1-4]
dimgray

gray

gray[0-100]
lightgray
lightslategray
slategray[1-4]

Blacks
black

Reds
coral[1-4]
crimson
darksalmon
deeppink[1-4]
firebrick[1-4]
hotpink[1-4]
indianred[1-4]
lightpink[1-4]
lightsalmon[1-4]
maroon[1-4]
mediumvioletred
orangered[1-4]
palevioletred[1-4]
pink[1-4]
red[1-4]
salmon[1-4]
tomato[1-4]
violetred[1-4]

Browns

beige

brown[1-4]
burlywood[1-4]
chocolate[1-4]
darkkhaki
khaki[1-4]

peru
rosybrown[1-4]
saddlebrown

sandybrown
sienna[1-4]
tan[1-4]

Oranges
darkorange[1-4]
orange[1-4]

orangered[1-4]

Yellows
darkgoldenrod[1-4]
gold[1-4]

goldenrod[1-4]

greenyellow

lightgoldenrod[1-4]
lightgoldenrodyellow

lightyellow[1-4]
palegoldenrod

yellow[1-4]
yellowgreen

Greens
chartreuse[1-4]
darkgreen
darkolivegreen[1-4]
darkseagreen[1-4]
forestgreen
green[1-4]
greenyellow
lawngreen
lightseagreen
limegreen
mediumseagreen
mediumspringgreen
mintcream
olivedrab[1-4]
palegreen[1-4]
seagreen[1-4]
springgreen[1-4]
yellowgreen

Cyans
aquamarine[1-4]
cyan[1-4]
darkturquoise
lightcyan[1-4]
mediumaquamarine
mediumturquoise
paleturquoise[1-4]

38

turquoise[1-4]

Blues
aliceblue
blue[1-4]
blueviolet
cadetblue[1-4]
cornflowerblue
darkslateblue
deepskyblue[1-4]
dodgerblue[1-4]
indigo
lightblue[1-4]
lightskyblue[1-4]
lightslateblue[1-4]
mediumblue
mediumslateblue
midnightblue
navy
navyblue
powderblue
royalblue[1-4]
skyblue[1-4]
slateblue[1-4]
steelblue[1-4]

Magentas
blueviolet
darkorchid[1-4]
darkviolet
magenta[1-4]
mediumorchid[1-4]
mediumpurple[1-4]
mediumvioletred
orchid[1-4]
palevioletred[1-4]
plum[1-4]
purple[1-4]
violet
violetred[1-4]

