
Drawing graphs withdot

Eleftherios Koutsofios and Stephen North

February 4, 2002

Abstract

dot draws directed graphs as hierarchies. It runs as a command line pro-
gram, web visualization service, or with a compatible graphical interface.
Its features include well-tuned layout algorithms for placing nodes and edge
splines, edge labels, “record” shapes with “ports” for drawing data struc-
tures; cluster layouts; and an underlying file language for stream-oriented
graph tools. Below is a reduced module dependency graph of an SML-NJ
compiler that took 0.98 seconds of user time on a 1.4 Ghz AMD Athlon.

ContMap

FreeMap

Expand

CPSprint

Coder

BaseCoder

ErrorMsg

SparcInstr

GlobalFix

CPS

Hoist

SortedList Intset

CPSopt

Contract

Eta

Closure

Profile

List2

SparcAsCodeSparcMCEmit

IEEEReal

SparcCM

CG

SparcMCode

ClosureCallee

Sort

SparcAsEmit

Spill

PrintUtil

CPSsize

Prim

SparcMC

CPScomp

Access

RealConst

SparcAC

Convert

CoreInfo Lambda

CPSgen

Strs

Signs

AbstractFct

ApplyFunctor

Overload

PrintType

Unify

Typecheck

PrintAbsyn

Stream

MLLexFun

Vector

Ascii

LrParser JoinWithArg

Join

MLLrValsFun

CoreLang

NewParse

Index

Misc

TyvarSet

Absyn

Types

Normalize

Modules

ConRep

Instantiate

LrTable Backpatch

PrimTypes PolyCont

Initial

Assembly Math Unsafe

Loader

CInterface CleanUp

CoreFunc

InLine

Fastlib

CoreDummy

Overloads MakeMos

Stamps

IntmapPersStamps

Pathnames

Symbol

Bigint

Dynamic

IntStrMap

ArrayExt

UnionfindSiblings

StrgHash

Env

BasicTypes

Tuples

ModuleUtil

EqTypes

Fixity

TypesUtil

Equal

Variables

BareAbsyn PrintBasics

PrintVal

PrintDec

SigMatch

IntSparcD

IntShare BatchRealDebug BogusDebug

UnixPaths InteractModuleComp

Importer

IntSparcIntNullD

Linkage

Prof

IntNull

Interp

ProcessFile

FreeLvar LambdaOpt

Translate

OptReorder

CompSparc

MCopt

MCprint

Nonrec MC

InlineOps

Unboxed

1



dot User’s Manual, February 4, 2002 2

1 Basic Graph Drawing

dot draws directed graphs. It reads attributed graph text files and writes drawings,
either as graph files or in a graphics format such as GIF, PNG, SVG or PostScript
(which can be converted to PDF).

dot draws a graph in four main phases. Knowing this helps you to understand
what kind of layoutsdot makes and how you can control them. The layout proce-
dure used bydot relies on the graph being acyclic. Thus, the first step is to break
any cycles which occur in the input graph by reversing the internal direction of
certain cyclic edges. The next step assigns nodes to discrete ranks or levels. In a
top-to-bottom drawing, ranks determineY coordinates. Edges that span more than
one rank are broken into chains of “virtual” nodes and unit-length edges. The third
step orders nodes within ranks to avoid crossings. The fourth step setsX coordi-
nates of nodes to keep edges short, and the final step routes edge splines. This is
the same general approach as most hierarchical graph drawing programs, based on
the work of Warfield [War77], Carpano [Car80] and Sugiyama [STT81]. We refer
the reader to [GKNV93] for a thorough explanation ofdot’s algorithms.

dot accepts input in theDOT language (cf. Appendix A). This language de-
scribes three kinds of objects: graphs, nodes, and edges. The main (outermost)
graph can be directed (digraph ) or undirectedgraph . Becausedot makes lay-
outs of directed graphs, all the following examples usedigraph . (A separate
layout utility, neato, draws undirected graphs [Nor92].) Within a main graph, a
subgraph defines a subset of nodes and edges.

Figure 1 is an example graph in theDOT language. Line 1 gives the graph
name and type. The lines that follow create nodes, edges, or subgraphs, and set
attributes. Names of all these objects may be C identifiers, numbers, or quoted C
strings. Quotes protect punctuation and white space.

A node is created when its name first appears in the file. An edge is created
when nodes are joined by the edge operator-> . In the example, line 2 makes
edges frommainto parse, and fromparseto execute. Runningdoton this file (call
it graph1.dot )

$ dot -Tps graph1.dot -o graph1.ps

yields the drawing of Figure 2. The command line option-Tps selects PostScript
(EPSF) output.graph1.ps may be printed, displayed by a PostScript viewer, or
embedded in another document.

It is often useful to adjust the representation or placement of nodes and edges
in the layout. This is done by setting attributes of nodes, edges, or subgraphs in
the input file. Attributes are name-value pairs of character strings. Figures 3 and 4
illustrate some layout attributes. In the listing of Figure 3, line 2 sets the graph’s



dot User’s Manual, February 4, 2002 3

1: digraph G {
2: main -> parse -> execute;
3: main -> init;
4: main -> cleanup;
5: execute -> make_string;
6: execute -> printf
7: init -> make_string;
8: main -> printf;
9: execute -> compare;
10: }

Figure 1: Small graph

main

parse

init

cleanup

printf

execute

make_string compare

Figure 2: Drawing of small graph



dot User’s Manual, February 4, 2002 4

size to 4,4 (in inches). This attribute controls the size of the drawing; if the
drawing is too large, it is scaled as necessary to fit.

Node or edge attributes are set off in square brackets. In line 3, the nodemain
is assigned shapebox . The edge in line 4 is straightened by increasing itsweight
(the default is1). The edge in line 6 is drawn as a dotted line. Line 8 makes edges
from execute to make string andprintf . In line 10 the default edge color
is set tored . This affects any edges created after this point in the file. Line 11
makes a bold edge labeled100 times . In line 12, nodemake_string is given
a multi-line label. Line 13 changes the default node to be a box filled with a shade
of blue. The nodecompare inherits these values.

2 Drawing Attributes

The complete list of attributes that affect graph drawing is summarized in Tables 1,
2 and 3.

2.1 Node Shapes

Nodes are drawn, by default, withshape=ellipse , width=.75 , height=.5
and labeled by the node name. Other common shapes includebox , circle ,
record andplaintext . A complete list of node shapes is given in Appendix E.
The node shapeplaintext is of particularly interest in that it draws a node with-
out any outline, an important convention in some kinds of diagrams. In cases where
the graph structure is of main concern, and especially when the graph is moderately
large, thepoint shape reduces nodes to display minimal content. When drawn, a
node’s actual size is the greater of the requested size and the area needed for its text
label, unlessfixedsize=true , in which case thewidth andheight values
are enforced.

Node shapes fall into two broad categories: polygon-based and record-based.1

All node shapes exceptrecord and Mrecord are considered polygonal, and
are modeled by the number of sides (ellipses and circles being special cases), and
a few other geometric properties. Some of these properties can be specified in
a graph. Ifregular=true , the node is forced to be regular. The parameter
peripheries sets the number of boundary curves drawn. For example, a dou-
blecircle hasperipheries=2 . Theorientation attribute specifies a clock-
wise rotation of the polygon, measured in degrees.

1There is a way to implement custom node shapes, usingshape=epsf and theshapefile
attribute, and relying on PostScript output. The details are beyond the scope of this user’s guide.
Please contact the authors for further information.



dot User’s Manual, February 4, 2002 5

1: digraph G {
2: size ="4,4";
3: main [shape=box]; /* this is a comment */
4: main -> parse [weight=8];
5: parse -> execute;
6: main -> init [style=dotted];
7: main -> cleanup;
8: execute -> { make_string; printf}
9: init -> make_string;
10: edge [color=red]; // so is this
11: main -> printf [style=bold,label="100 times"];
12: make_string [label="make a\nstring"];
13: node [shape=box,style=filled,color=".7 .3 1.0"];
14: execute -> compare;
15: }

Figure 3: Fancy graph

main

parse

init

cleanup

printf

100 times

execute

make a
stringcompare

Figure 4: Drawing of fancy graph



dot User’s Manual, February 4, 2002 6

The shapepolygon exposes all the polygonal parameters, and is useful for
creating many shapes that are not predefined. In addition to the parametersregular ,
peripheries andorientation , mentioned above, polygons are parameter-
ized by number of sidessides , skew anddistortion . skew is a floating
point number (usually between−1.0 and1.0) that distorts the shape by slanting
it from top-to-bottom, with positive values moving the top of the polygon to the
right. Thus,skew can be used to turn a box into a parallelogram.distortion
shrinks the polygon from top-to-bottom, with negative values causing the bottom
to be larger than the top.distortion turns a box into a trapezoid. A variety of
these polygonal attributes are illustrated in Figures 5 and 6.

Record-based nodes form the other class of node shapes. These include the
shapesrecord andMrecord . The two are identical except that the latter has
rounded corners. These nodes represent recursive lists of fields, which are drawn
as alternating horizontal and vertical rows of boxes. The recursive structure is
determined by the node’slabel , which has the following schema:

rlabel → field ( ’ |’ field )*
field → boxLabel| ’’ rlabel ’’
boxLabel → [ ’ <’ string ’>’ ] [ string ]

Literal braces, vertical bars and angle brackets must be escaped. Spaces are
interpreted as separators between tokens, so they must be escaped if they are to
appear literally in the text. The first string in aboxLabelgives a name to the field,
and serves as a port name for the box (cf. Section 3.1). The second string is used
as a label for the field; it may contain the same escape sequences as multi-line
labels (cf. Section 2.2. The example of Figures 7 and 8 illustrates the use and some
properties of records.

2.2 Labels

As mentioned above, the default node label is its name. Edges are unlabeled by
default. Node and edge labels can be set explicitly using thelabel attribute as
shown in Figure 4.

Though it may be convenient to label nodes by name, at other times labels
must be set explicitly. For example, in drawing a file directory tree, one might have
several directories namedsrc , but each one must have a unique node identifier.
The inode number or full path name are suitable unique identifiers. Then the label
of each node can be set to the file name within its directory.



dot User’s Manual, February 4, 2002 7

a

b

hello world d

e

Figure 5: Example of polygonal shapes for nodes

1: digraph G {
2: a -> b -> c;
3: b -> d;
4: a [shape=polygon,sides=5,peripheries=3,color=blue_light,style=filled];
5: c [shape=polygon,sides=4,skew=.4,label="hello world"]
6: d [shape=invtriangle];
7: e [shape=polygon,sides=4,distortion=.7];
8: }

Figure 6: Graph with polygonal shapes

1: digraph structs {
2: node [shape=record];
3: struct1 [shape=record,label="<f0> left|<f1> mid\ dle|<f2> right"];
4: struct2 [shape=record,label="<f0> one|<f1> two"];
5: struct3 [shape=record,label="hello\nworld |{ b |{c|<here> d|e}| f}| g | h"];
6: struct1 -> struct2;
7: struct1 -> struct3;
8: }

Figure 7: Records with nested fields



dot User’s Manual, February 4, 2002 8

Multi-line labels can be created by using the escape sequences\n , \l , \r to
terminate lines that are centered, or left or right justified.2

The node shapeMdiamond , Msquare andMcircle use the attributestoplabel
andbottomlabel to specify additional labels appearing near the top and bottom
of the nodes, respectively.

Graphs and cluster subgraphs may also have labels. Graph labels appear, by
default, centered below the graph. Settinglabelloc=t centers the label above
the graph. Cluster labels appear within the enclosing rectangle, in the upper left
corner. The valuelabelloc=b moves the label to the bottom of the rectangle.
The settinglabeljust=r moves the label to the right.

The default font is 14-point Times-Roman, in black. Other font families,
sizes and colors may be selected using the attributesfontname , fontsize and
fontcolor . Font names should be compatible with the target interpreter. It is
best to use only the standard font families Times, Helvetica, Courier or Symbol
as these are guaranteed to work with any target graphics language. For example,
Times-Italic , Times-Bold , andCourier are portable;AvanteGarde-
DemiOblique isn’t.

For bitmap output, such as GIF or JPG,dot relies on having these fonts avail-
able during layout. Thefontpath attribute can specify a list of directories3

which should be searched for the font files. If this is not set,dot will use the
DOTFONTPATH environment variable or, if this is not set, the GDFONTPATH
environment variable. If none of these is set,dotuses a built-in list.

Edge labels are positioned near the center of the edge. Usually, care is taken to
prevent the edge label from overlapping edges and nodes. It can still be difficult,
in a complex graph, to be certain which edge a label belongs to. If thedecorate
attribute is set to true, a line is drawn connecting the label to its edge. Sometimes
avoiding collisions among edge labels and edges forces the drawing to be bigger
than desired. Iflabelfloat=true , dot does not try to prevent such overlaps,
allowing a more compact drawing.

An edge can also specify additional labels, usingheadlabel andtaillabel ,
which are be placed near the ends of the edge. The characteristics of these la-
bels are specified using the attributeslabelfontname , labelfontsize and
labelfontcolor . These labels are placed near the intersection of the edge and
the node and, as such, may interfere with them. To tune a drawing, the user can set
the labelangle and labeldistance attributes. The former sets the angle,
in degrees, which the label is rotated from the angle the edge makes incident with

2The escape sequence\N is an internal symbol for node names.
3For Unix-based systems, this is a concatenated list of pathnames, separated by colons. For

Windows-based systems, the pathnames are separated by semi-colons.



dot User’s Manual, February 4, 2002 9

the node. The latter sets a multiplicative scaling factor to adjust the distance that
the label is from the node.

2.3 Graphics Styles

Nodes and edges can specify acolor attribute, with black the default. This is the
color used to draw the node’s shape or the edge. Acolor value can be a hue-
saturation-brightness triple (three floating point numbers between 0 and 1, sepa-
rated by commas); one of the colors names listed in Appendix G (borrowed from
some version of the X window system); or a red-green-blue (RGB) triple4 (three
hexadecimal number between 00 and FF, preceded by the character ’#’). Thus,
the values"orchid" , "0.8396,0.4862,0.8549" and#DA70D6 are three
ways to specify the same color. The numerical forms are convenient for scripts or
tools that automatically generate colors. Color name lookup is case-insensitive and
ignores non-alphanumeric characters, sowarmgrey andWarm_Grey are equiv-
alent.

We can offer a few hints regarding use of color in graph drawings. First, avoid
using too many bright colors. A “rainbow effect” is confusing. It is better to
choose a narrower range of colors, or to vary saturation along with hue. Sec-
ond, when nodes are filled with dark or very saturated colors, labels seem to be
more readable withfontcolor=white and fontname=Helvetica . (We
also have PostScript functions fordot that create outline fonts from plain fonts.)
Third, in certain output formats, you can define your own color space. For exam-
ple, if using PostScript for output, you can redefinenodecolor , edgecolor ,
or graphcolor in a library file. Thus, to use RGB colors, place the following
line in a file lib.ps .

/nodecolor {setrgbcolor} bind def

Use the-l command line option to load this file.

dot -Tps -l lib.ps file.dot -o file.ps

The style attribute controls miscellaneous graphics features of nodes and
edges. This attribute is a comma-separated list of primitives with optional argu-
ment lists. The predefined primitives includesolid , dashed , dotted , bold
and invis . The first four control line drawing in node boundaries and edges
and have the obvious meaning. The valueinvis causes the node or edge to be
left undrawn. The style for nodes can also includefilled , diagonals and

4A fourth form, RGBA, is also supported, which has the same format as RGB with an additional
fourth hexadecimal number specifying alpha channel or transparency information.



dot User’s Manual, February 4, 2002 10

Name Default Values
bottomlabel auxiliary label for nodes ofshape M*
color black node shape color
comment any string (format-dependent)
distortion 0.0 node distortion forshape=polygon
fillcolor lightgrey/black node fill color
fixedsize false label text has no affect on node size
fontcolor black type face color
fontname Times-Roman font family
fontsize 14 point size of label
group name of node’s group
height .5 height in inches
label node name any string
layer overlay range all , id or id:id
orientation 0.0 node rotation angle
peripheries shape-dependent number of node boundaries
regular false force polygon to be regular
shape ellipse node shape; see Section 2.1 and Appendix E
shapefile external EPSF or SVG custom shape file
sides 4 number of sides forshape=polygon
skew 0.0 skewing of node forshape=polygon
style graphics options, e.g. bold, dotted,

filled ; cf. Section 2.3
toplabel auxiliary label for nodes ofshape M*
URL URL associated with node (format-dependent)
width .75 width in inches
z 0.0 z coordinate for VRML output

Table 1: Node attributes



dot User’s Manual, February 4, 2002 11

Name Default Values
arrowhead normal style of arrowhead at head end
arrowsize 1.0 scaling factor for arrowheads
arrowtail normal style of arrowhead at tail end
color black edge stroke color
comment any string (format-dependent)
constraint true use edge to affect node ranking
decorate if set, draws a line connecting labels with their edges
dir forward forward , back , both , or none
fontcolor black type face color
fontname Times-Roman font family
fontsize 14 point size of label
headlabel label placed near head of edge
headport n,ne,e,se,s,sw,w,nw
headURL URL attached to head label if output format isismap
label edge label
labelangle -25.0 angle in degrees which head or tail label is rotated off edge
labeldistance 1.0 scaling factor for distance of head or tail label from node
labelfloat false lessen constraints on edge label placement
labelfontcolor black type face color for head and tail labels
labelfontname Times-Roman font family for head and tail labels
labelfontsize 14 point size for head and tail labels
layer overlay range all , id or id:id
lhead name of cluster to use as head of edge
ltail name of cluster to use as tail of edge
minlen 1 minimum rank distance between head and tail
samehead tag for head node; edge heads with the same tag are

merged onto the same port
sametail tag for tail node; edge tails with the same tag are merged

onto the same port
style graphics options, e.g.bold, dotted, filled ; cf.

Section 2.3
taillabel label placed near tail of edge
tailport n,ne,e,se,s,sw,w,nw
tailURL URL attached to tail label if output format isismap
weight 1 integer cost of stretching an edge

Table 2: Edge attributes



dot User’s Manual, February 4, 2002 12

Name Default Values
bgcolor background color for drawing, plus initial fill color
center false center drawing onpage
clusterrank local may beglobal or none
color black for clusters, outline color, and fill color iffillcolor not defined
comment any string (format-dependent)
compound false allow edges between clusters
concentrate false enables edge concentrators
fillcolor black cluster fill color
fontcolor black type face color
fontname Times-Roman font family
fontpath list of directories to such for fonts
fontsize 14 point size of label
label any string
labeljust left-justified ”r” for right-justified cluster labels
labelloc top ”r” for right-justified cluster labels
layers id:id:id...
margin .5 margin included inpage , inches
mclimit 1.0 scale factor for mincross iterations
nodesep .25 separation between nodes, in inches.
nslimit if set to f, bounds network simplex iterations by(f)(number of nodes)

when setting x-coordinates
nslimit1 if set to f, bounds network simplex iterations by(f)(number of nodes)

when ranking nodes
ordering if out out edge order is preserved
orientation portrait if rotate is not used and the value islandscape , use landscape

orientation
page unit of pagination,e.g."8.5,11"
pagedir BL traversal order of pages
quantum if quantum ¿ 0.0, node label dimensions will be rounded to integral

multiples ofquantum
rank same, min , max, source or sink
rankdir TB LR (left to right) orTB (top to bottom)
ranksep .75 separation between ranks, in inches.
ratio approximate aspect ratio desired,fill or auto
remincross if true and there are multiple clusters, re-run crossing minimization
rotate If 90, set orientation to landscape
samplepoints 8 number of points used to represent ellipses and circles on output (cf.

Appendix C
searchsize 30 maximum edges with negative cut values to check when looking for a

minimum one during network simplex
size maximum drawing size, in inches
style graphics options, e.g.filled for clusters
URL URL associated with graph (format-dependent)

Table 3: Graph attributes



dot User’s Manual, February 4, 2002 13

rounded . filled shades inside the node using the colorfillcolor . If this
is not set, the value ofcolor is used. If this also is unset, light grey5 is used as the
default. Thediagonals style causes short diagonal lines to be drawn between
pairs of sides near a vertex. Therounded style rounds polygonal corners.

User-defined style primitives can be implemented as custom PostScript proce-
dures. Such primitives are executed inside thegsave context of a graph, node,
or edge, before any of its marks are drawn. The argument lists are translated to
PostScript notation. For example, a node withstyle="setlinewidth(8)"
is drawn with a thick outline. Here,setlinewidth is a PostScript built-in, but
user-defined PostScript procedures are called the same way. The definition of these
procedures can be given in a library file loaded using-l as shown above.

Edges have adir attribute to set arrowheads.dir may beforward (the
default),back , both , or none . This refers only to where arrowheads are drawn,
and does not change the underlying graph. For example, settingdir=back causes
an arrowhead to be drawn at the tail and no arrowhead at the head, but it does not
exchange the endpoints of the edge. The attributesarrowhead andarrowtail
specify the style of arrowhead, if any, which is used at the head and tail ends of
the edge. Allowed values arenormal , inv , dot , invdot , odot , invodot
andnone (cf. Appendix F). The attributearrowsize specifies a multiplica-
tive factor affecting the size of any arrowhead drawn on the edge. For example,
arrowsize=2.0 makes the arrow twice as long and twice as wide.

In terms of style and color, clusters act somewhat like large box-shaped nodes,
in that the cluster boundary is drawn using the cluster’scolor attribute and, in
general, the appearance of the cluster is affected thestyle , color andfillcolor
attributes.

If the root graph has abgcolor attribute specified, this color is used as the
background for the entire drawing, and also serves as the default fill color.

2.4 Drawing Orientation, Size and Spacing

Two attributes that play an important role in determining the size of adot drawing
arenodesep andranksep . The first specifies the minimum distance, in inches,
between two adjacent nodes on the same rank. The second deals with rank sepa-
ration, which is the minimum vertical space between the bottoms of nodes in one
rank and the tops of nodes in the next. Theranksep attribute sets the rank separa-
tion, in inches. Alternatively, one can haveranksep=equally . This guarantees
that all of the ranks are equally spaced, as measured from the centers of nodes on
adjacent ranks. In this case, the rank separation between two ranks is at least the

5The default is black if the output format is MIF, or if the shape ispoint .



dot User’s Manual, February 4, 2002 14

default rank separation. As the two uses ofranksep are independent, both can
be set at the same time. For example,ranksep="1.0 equally" causes ranks
to be equally spaced, with a minimum rank separation of 1 inch.

Often a drawing made with the default node sizes and separations is too big
for the target printer or for the space allowed for a figure in a document. There
are several ways to try to deal with this problem. First, we will review howdot
computes the final layout size.

A layout is initially made internally at its “natural” size, using default settings
(unlessratio=compress was set, as described below). There is no bound on
the size or aspect ratio of the drawing, so if the graph is large, the layout is also
large. If you don’t specifysize or ratio , then the natural size layout is printed.

The easiest way to control the output size of the drawing is to setsize=" x, y"
in the graph file (or on the command line using-G). This determines the size of the
final layout. For example,size="7.5,10" fits on an 8.5x11 page (assuming
the default page orientation) no matter how big the initial layout.

ratio also affects layout size. There are a number of cases, depending on the
settings ofsize andratio .

Case 1.ratio was not set. If the drawing already fits within the givensize ,
then nothing happens. Otherwise, the drawing is reduced uniformly enough to
make the critical dimension fit.

If ratio was set, there are four subcases.
Case 2a. If ratio= x wherex is a floating point number, then the drawing

is scaled up in one dimension to achieve the requested ratio expressed as drawing
height/width. For example,ratio=2.0 makes the drawing twice as high as it
is wide. Then the layout is scaled usingsize as in Case 1.

Case 2b.If ratio=fill andsize= x, y was set, then the drawing is scaled
up in one dimension to achieve the ratioy/x. Then scaling is performed as in Case
1. The effect is that all of the bounding box given bysize is filled.

Case 2c.If ratio=compress andsize= x, y was set, then the initial layout
is compressed to attempt to fit it in the given bounding box. This trades off lay-
out quality, balance and symmetry in order to pack the layout more tightly. Then
scaling is performed as in Case 1.

Case 2d.If ratio=auto and thepage attribute is set and the graph cannot
be drawn on a single page, thensize is ignored anddotcomputes an “ideal” size.
In particular, the size in a given dimension will be the smallest integral multiple
of the page size in that dimension which is at least half the current size. The two
dimensions are then scaled independently to the new size.

If rotate=90 is set, ororientation=landscape , then the drawing is
rotated90◦ into landscape mode. TheX axis of the layout would be along theY
axis of each page. This does not affectdot’s interpretation ofsize , ratio or



dot User’s Manual, February 4, 2002 15

page .
At this point, if page is not set, then the final layout is produced as one page.
If page= x, y is set, then the layout is printed as a sequence of pages which

can tiled or assembled into a mosaic. Common settings arepage="8.5,11" or
page="11,17" . These values refer to the full size of the physical device; the
actual area used will be reduced by the margin settings. (For printer output, the
default is 0.5 inches; for bitmap-output, theX andY margins are 10 and 2 points,
respectively.) For tiled layouts, it may be helpful to set smaller margins. This can
be done by using themargin attribute. This can take a single number, used to set
both margins, or two numbers separated by a comma to set thex andy margins
separately. As usual, units are in inches. Although one can setmargin=0 , un-
fortunately, many bitmap printers have an internal hardware margin that cannot be
overridden.

The order in which pages are printed can be controlled by thepagedir at-
tribute. Output is always done using a row-based or column-based ordering, and
pagedir is set to a two-letter code specifying the major and minor directions. For
example, the default isBL, specifying a bottom-to-top (B) major order and a left-
to-right (L) minor order. Thus, the bottom row of pages is emitted first, from left
to right, then the second row up, from left to right, and finishing with the top row,
from left to right. The top-to-bottom order is represented byT and the right-to-left
order byR.

If center=true and the graph can be output on one page, using the default
page size of 8.5 by 11 inches ifpage is not set, the graph is repositioned to be
centered on that page.

A common problem is that a large graph drawn at a small size yields unreadable
node labels. To make larger labels, something has to give. There is a limit to the
amount of readable text that can fit on one page. Often you can draw a smaller
graph by extracting an interesting piece of the original graph before runningdot.
We have some tools that help with this.

sccmap decompose the graph into strongly connected components

tred compute transitive reduction (remove edges implied by transitivity)

gpr graph processor to select nodes or edges, and contract or remove the rest of
the graph

unflatten improve aspect ratio of trees by staggering the lengths of leaf edges

With this in mind, here are some thing to try on a given graph:

1. Increase the nodefontsize .



dot User’s Manual, February 4, 2002 16

2. Use smallerranksep andnodesep .

3. Useratio=auto .

4. Useratio=compress and give a reasonablesize .

5. A sans serif font (such as Helvetica) may be more readable than Times when
reduced.

2.5 Node and Edge Placement

Attributes indot provide many ways to adjust the large-scale layout of nodes and
edges, as well as fine-tune the drawing to meet the user’s needs and tastes. This
section discusses these attributes6.

Sometimes it is natural to make edges point from left to right instead of from
top to bottom. Ifrankdir=LR in the top-level graph, the drawing is rotated
in this way. TB (top to bottom) is the default. (BT seems potentially useful for
drawing upward-directed graphs, but hasn’t been implemented. In some graphs,
you could achieve the same effect by reversing the endpoints of edges and setting
theirdir=back .) We note that the setting ofrankdir is complementary to how
the final drawing may be rotated byorientation or rotate .

In graphs with time-lines, or in drawings that emphasize source and sink nodes,
you may need to constrain rank assignments. Therank of a subgraph may be set
to samerank , minrank , source , maxrank or sink . A value samerank
causes all the nodes in the subgraph to occur on the same rank. If set tominrank ,
all the nodes in the subgraph are guaranteed to be on a rank at least as small as
any other node in the layout7. This can be made strict by settingrank=source ,
which forces the nodes in the subgraph to be on some rank strictly smaller than
the rank of any other nodes (except those also specified byminrank or source
subgraphs). The valuesmaxrank or sink play an analogous role for the maxi-
mum rank. Note that these constraints induce equivalence classes of nodes. If one
subgraph forces nodesA andB to be on the same rank, and another subgraph forces
nodesC andB to share a rank, then all nodes in both subgraphs must be drawn on
the same rank. Figures 9 and 10 illustrate using subgraphs for controlling rank
assignment.

In some graphs, the left-to-right ordering of nodes is important. If a subgraph
hasordering=out , then out-edges within the subgraph that have the same tail

6For completeness, we note thatdotalso provides access to various parameters which play techni-
cal roles in the layout algorithms. These includemclimit , nslimit , nslimit1 , remincross
andsearchsize .

7Recall that the minimum rank occurs at the top of a drawing.



dot User’s Manual, February 4, 2002 17

node wll fan-out from left to right in their order of creation. (Also note that flat
edges involving the head nodes can potentially interfere with their ordering.)

There are many ways to fine-tune the layout of nodes and edges. For example,
if the nodes of an edge both have the samegroup attribute,dot tries to keep
the edge straight and avoid having other edges cross it. Theweight of an edge
provides another way to keep edges straight. An edge’sweight suggests some
measure of an edge’s importance; thus, the heavier the weight, the closer together
its nodes should be.dotcauses edges with heavier weights to be drawn shorter and
straighter.

Edge weights also play a role when nodes are constrained to the same rank.
Edges with non-zero weight between these nodes are aimed across the rank in
the same direction (left-to-right, or top-to-bottom in a rotated drawing) as far as
possible. This fact may be exploited to adjust node ordering by placing invisible
edges (style="invis" ) where needed.

The end points of edges adjacent to the same node can be constrained using the
samehead andsametail attributes. Specifically, all edges with the same head
and the same value ofsamehead are constrained to intersect the head node at the
same point. The analogous property holds for tail nodes andsametail .

During rank assignment, the head node of an edge is constrained to be on a
higher rank than the tail node. If the edge hasconstraint=false , however,
this requirement is not enforced.

In certain circumstances, the user may desire that the end points of an edge
never get too close. This can be obtained by setting the edge’sminlen attribute.
This defines the minimum difference between the ranks of the head and tail. For
example, ifminlen=2 , there will always be at least one intervening rank between
the head and tail. Note that this is not concerned with the geometric distance be-
tween the two nodes.

Fine-tuning should be approached cautiously.dot works best when it can
makes a layout without much “help” or interference in its placement of individual
nodes and edges. Layouts can be adjusted somewhat by increasing theweight of
certain edges, or by creating invisible edges or nodes usingstyle=invis , and
sometimes even by rearranging the order of nodes and edges in the file. But this can
backfire because the layouts are not necessarily stable with respect to changes in
the input graph. One last adjustment can invalidate all previous changes and make
a very bad drawing. A future project we have in mind is to combine the mathemat-
ical layout techniques ofdot with an interactive front-end that allows user-defined
hints and constraints.



dot User’s Manual, February 4, 2002 18

3 Advanced Features

3.1 Node Ports

A node port is a point where edges can attach to a node. (When an edge is not
attached to a port, it is aimed at the node’s center and the edge is clipped at the
node’s boundary.)

Simple ports can be specified by using theheadport and tailport at-
tributes. These can be assigned one of the 8 compass points"n" , "ne" , "e" ,
"se" , "s" , "sw" , "w" or "nw" . The end of the node will then be aimed at that
position on the node. Thus, iftailport=se , the edge will connect to the tail
node at its southeast “corner”.

Nodes with arecord shape use the record structure to define ports. As noted
above, this shape represents a record as recursive lists of boxes. If a box defines
a port name, by using the construct< port name > in the box label, the cen-
ter of the box can be used a port. (By default, the edge is clipped to the box’s
boundary.) This is done by modifying the node name with the port name, using the
syntaxnodename: port name, as part of an edge declaration. Figure 11 illustrates
the declaration and use of port names in record nodes, with the resulting drawing
shown in Figure 12.

DISCLAIMER: At present, simple ports don’t work as advertised, even
when they should. There is also the case where we might not want them to
work, e.g., when the tailport=n and the headport=s. Finally, in theory, dot
should be able to allow both types of ports on an edge, since the notions are
orthogonal. There is still the question as to whether the two syntaxes could
be combined, i.e., treat the compass points as reserved port names, and allow
nodename:portname:compassname.

Figures 13 and 14 give another example of the use of record nodes and ports.
This repeats the example of Figures 7 and 8 but now using ports as connectors
for edges. Note that records sometimes look better if their input height is set to a
small value, so the text labels dominate the actual size, as illustrated in Figure 11.
Otherwise the default node size (.75 by .5) is assumed, as in Figure 14. The
example of Figures 15 and 16 uses left-to-right drawing in a layout of a hash table.

3.2 Clusters

A cluster is a subgraph placed in its own distinct rectangle of the layout. A sub-
graph is recognized as a cluster when its name has the prefixcluster . (If the
top-level graph hasclusterrank=none , this special processing is turned off).



dot User’s Manual, February 4, 2002 19

Labels, font characteristics and thelabelloc attribute can be set as they would
be for the top-level graph, though cluster labels appear above the graph by default.
For clusters, the label is left-justified by default; iflabeljust="r" , the label is
right-justified. Thecolor attribute specifies the color of the enclosing rectangle.
In addition, clusters may havestyle="filled" , in which case the rectangle
is filled with the color specified byfillcolor before the cluster is drawn. (If
fillcolor is not specified, the cluster’scolor attribute is used.)

Clusters are drawn by a recursive technique that computes a rank assignment
and internal ordering of nodes within clusters. Figure 17 through 19 are cluster
layouts and the corresponding graph files.



dot User’s Manual, February 4, 2002 20

left mid dle right

one two hello
world

b
c d e

f
g h

Figure 8: Drawing of records



dot User’s Manual, February 4, 2002 21

digraph asde91 {
ranksep=.75; size = "7.5,7.5";

{
node [shape=plaintext, fontsize=16];
/* the time-line graph */
past -> 1978 -> 1980 -> 1982 -> 1983 -> 1985 -> 1986 ->

1987 -> 1988 -> 1989 -> 1990 -> "future";
/* ancestor programs */
"Bourne sh"; "make"; "SCCS"; "yacc"; "cron"; "Reiser cpp";
"Cshell"; "emacs"; "build"; "vi"; "<curses>"; "RCS"; "C*";

}

{ rank = same;
"Software IS"; "Configuration Mgt"; "Architecture & Libraries";
"Process";

};

node [shape=box];
{ rank = same; "past"; "SCCS"; "make"; "Bourne sh"; "yacc"; "cron"; }
{ rank = same; 1978; "Reiser cpp"; "Cshell"; }
{ rank = same; 1980; "build"; "emacs"; "vi"; }
{ rank = same; 1982; "RCS"; "<curses>"; "IMX"; "SYNED"; }
{ rank = same; 1983; "ksh"; "IFS"; "TTU"; }
{ rank = same; 1985; "nmake"; "Peggy"; }
{ rank = same; 1986; "C*"; "ncpp"; "ksh-i"; "<curses-i>"; "PG2"; }
{ rank = same; 1987; "Ansi cpp"; "nmake 2.0"; "3D File System"; "fdelta";

"DAG"; "CSAS";}
{ rank = same; 1988; "CIA"; "SBCS"; "ksh-88"; "PEGASUS/PML"; "PAX";

"backtalk"; }
{ rank = same; 1989; "CIA++"; "APP"; "SHIP"; "DataShare"; "ryacc";

"Mosaic"; }
{ rank = same; 1990; "libft"; "CoShell"; "DIA"; "IFS-i"; "kyacc"; "sfio";

"yeast"; "ML-X"; "DOT"; }
{ rank = same; "future"; "Adv. Software Technology"; }

"PEGASUS/PML" -> "ML-X";
"SCCS" -> "nmake";
"SCCS" -> "3D File System";
"SCCS" -> "RCS";
"make" -> "nmake";
"make" -> "build";
.
.
.

}

Figure 9: Graph with constrained ranks



dot User’s Manual, February 4, 2002 22

past

1978

1980

1982

1983

1985

1986

1987

1988

1989

1990

future

Bourne sh

Cshell

ksh

make

build

nmake

SCCS

RCS

3D File System

yacc

ryacc

cron

yeast

Reiser cpp

ncpp

emacs

nmake 2.0

vi

<curses>

<curses-i>

fdelta

SBCS

C*

CSAS

Software IS

Adv. Software Technology

Configuration Mgt Architecture & Libraries Process

IMX

TTU

SYNED

Peggy

ksh-i

ksh-88

IFS

IFS-isfio

PG2

PEGASUS/PML

Ansi cpp

backtalk

CoShell

PAX

DAG

DIADOT

CIA

CIA++

ML-X

SHIP DataShareAPP

kyacc

Mosaic

libft

Figure 10: Drawing with constrained ranks

1: digraph g {
2: node [shape = record,height=.1];
3: node0[label = "<f0> |<f1> G|<f2> "];
4: node1[label = "<f0> |<f1> E|<f2> "];
5: node2[label = "<f0> |<f1> B|<f2> "];
6: node3[label = "<f0> |<f1> F|<f2> "];
7: node4[label = "<f0> |<f1> R|<f2> "];
8: node5[label = "<f0> |<f1> H|<f2> "];
9: node6[label = "<f0> |<f1> Y|<f2> "];

10: node7[label = "<f0> |<f1> A|<f2> "];
11: node8[label = "<f0> |<f1> C|<f2> "];
12: "node0":f2 -> "node4":f1;
13: "node0":f0 -> "node1":f1;
14: "node1":f0 -> "node2":f1;
15: "node1":f2 -> "node3":f1;
16: "node2":f2 -> "node8":f1;
17: "node2":f0 -> "node7":f1;
18: "node4":f2 -> "node6":f1;
19: "node4":f0 -> "node5":f1;
20: }

Figure 11: Binary search tree using records



dot User’s Manual, February 4, 2002 23

 G  

 E   R  

 B   F  

 A   C  

 H   Y  

Figure 12: Drawing of binary search tree

1: digraph structs {
2: node [shape=record];
3: struct1 [shape=record,label="<f0> left|<f1> middle|<f2> right"];
4: struct2 [shape=record,label="<f0> one|<f1> two"];
5: struct3 [shape=record,label="hello\nworld |{ b |{c|<here> d|e}| f}| g | h"];
6: struct1:f1 -> struct2:f0;
7: struct1:f2 -> struct3:here;
8: }

Figure 13: Records with nested fields (revisited)

left middle right

one two hello
world

b
c d e

f
g h

Figure 14: Drawing of records (revisited)



dot User’s Manual, February 4, 2002 24

1: digraph G {
2: nodesep=.05;
3: rankdir=LR;
4: node [shape=record,width=.1,height=.1];
5:
6: node0 [label = "<f0> |<f1> |<f2> |<f3> |<f4> |<f5> |<f6> | ",height=2.5];
7: node [width = 1.5];
8: node1 [label = "{<n> n14 | 719 |<p> }"];
9: node2 [label = "{<n> a1 | 805 |<p> }"];

10: node3 [label = "{<n> i9 | 718 |<p> }"];
11: node4 [label = "{<n> e5 | 989 |<p> }"];
12: node5 [label = "{<n> t20 | 959 |<p> }"] ;
13: node6 [label = "{<n> o15 | 794 |<p> }"] ;
14: node7 [label = "{<n> s19 | 659 |<p> }"] ;
15:
16: node0:f0 -> node1:n;
17: node0:f1 -> node2:n;
18: node0:f2 -> node3:n;
19: node0:f5 -> node4:n;
20: node0:f6 -> node5:n;
21: node2:p -> node6:n;
22: node4:p -> node7:n;
23: }

Figure 15: Hash table graph file

 

 

 

 

 

 

 

 

n14 719  

a1 805  

i9 718  

e5 989  

t20 959  

o15 794  

s19 659  

Figure 16: Drawing of hash table



dot User’s Manual, February 4, 2002 25

digraph G {
subgraph cluster0 {

node [style=filled,color=white];
style=filled;
color=lightgrey;
a0 -> a1 -> a2 -> a3;
label = "process #1";

}

subgraph cluster1 {
node [style=filled];
b0 -> b1 -> b2 -> b3;
label = "process #2";
color=blue

}
start -> a0;
start -> b0;
a1 -> b3;
b2 -> a3;
a3 -> a0;
a3 -> end;
b3 -> end;

start [shape=Mdiamond];
end [shape=Msquare];

}

process #1 process #2

a0

a1

a2

b3a3

end

b0

b1

b2

start

Figure 17: Process diagram with clusters



dot User’s Manual, February 4, 2002 26

If the top-level graph has thecompound attribute set to true,dot will allow
edges connecting nodes and clusters. This is accomplished by an edge defining
an lhead or ltail attribute. The value of these attributes must be the name of
a cluster containing the head or tail node, respectively. In this case, the edge is
clipped at the cluster boundary. All other edge attributes, such asarrowhead
or dir , are applied to the truncated edge. For example, Figure 20 shows a graph
using thecompound attribute and the resulting diagram.

3.3 Concentrators

Settingconcentrate=true on the top-level graph enables an edge merging
technique to reduce clutter in dense layouts. Edges are merged when they run
parallel, have a common endpoint and have length greater than 1. A beneficial
side-effect in fixed-sized layouts is that removal of these edges often permits larger,
more readable labels. While concentrators indot look somewhat like Newbery’s
[New89], they are found by searching the edges in the layout, not by detecting
complete bipartite graphs in the underlying graph. Thus thedot approach runs
much faster but doesn’t collapse as many edges as Newbery’s algorithm.

4 Command Line Options

By default,dot operates in filter mode, reading a graph fromstdin , and writing
the graph onstdout in the DOT format with layout attributes appended.dot
supports a variety of command-line options:

-T formatsets the format of the output. Allowed values forformatare:

canon Prettyprint input; no layout is done.

dot AttributedDOT. Prints input with layout information attached as attributes,
cf. Appendix C.

fig FIG output.

gd GD format. This is the internal format used by the GD Graphics Library. An
alternate format isgd2 .

gif GIF output.

hpgl HP-GL/2 vector graphic printer language for HP wide bed plotters.

imap Produces HTML map files for client and server-side image maps. This
can be combined with a graphical form of the output, e.g., using-Tgif or



dot User’s Manual, February 4, 2002 27

1:digraph G {
2: size="8,6"; ratio=fill; node[fontsize=24];
3:
4: ciafan->computefan; fan->increment; computefan->fan; stringdup->fatal;
5: main->exit; main->interp_err; main->ciafan; main->fatal; main->malloc;
6: main->strcpy; main->getopt; main->init_index; main->strlen; fan->fatal;
7: fan->ref; fan->interp_err; ciafan->def; fan->free; computefan->stdprintf;
8: computefan->get_sym_fields; fan->exit; fan->malloc; increment->strcmp;
9: computefan->malloc; fan->stdsprintf; fan->strlen; computefan->strcmp;
10: computefan->realloc; computefan->strlen; debug->sfprintf; debug->strcat;
11: stringdup->malloc; fatal->sfprintf; stringdup->strcpy; stringdup->strlen;
12: fatal->exit;
13:
14: subgraph "cluster_error.h" { label="error.h"; interp_err; }
15:
16: subgraph "cluster_sfio.h" { label="sfio.h"; sfprintf; }
17:
18: subgraph "cluster_ciafan.c" { label="ciafan.c"; ciafan; computefan;
19: increment; }
20:
21: subgraph "cluster_util.c" { label="util.c"; stringdup; fatal; debug; }
22:
23: subgraph "cluster_query.h" { label="query.h"; ref; def; }
24:
25: subgraph "cluster_field.h" { get_sym_fields; }
26:
27: subgraph "cluster_stdio.h" { label="stdio.h"; stdprintf; stdsprintf; }
28:
29: subgraph "cluster_<libc.a>" { getopt; }
30:
31: subgraph "cluster_stdlib.h" { label="stdlib.h"; exit; malloc; free; realloc; }
32:
33: subgraph "cluster_main.c" { main; }
34:
35: subgraph "cluster_index.h" { init_index; }
36:
37: subgraph "cluster_string.h" { label="string.h"; strcpy; strlen; strcmp; strcat; }
38:}

Figure 18: Call graph file



dot User’s Manual, February 4, 2002 28

error.h

sfio.h

ciafan.cutil.c

query.h

stdio.h stdlib.hstring.h

ciafan

computefan def

fan

mallocstrlen stdprintfget_sym_fieldsstrcmp realloc

increment

fatal

exit

interp_errref

freestdsprintf

stringdup

strcpy sfprintf

main

getopt init_indexdebug

strcat

Figure 19: Call graph with labeled clusters

digraph G {
compound=true;
subgraph cluster0 {

a -> b;
a -> c;
b -> d;
c -> d;

}
subgraph cluster1 {

e -> g;
e -> f;

}
b -> f [lhead=cluster1];
d -> e;
c -> g [ltail=cluster0,

lhead=cluster1];
c -> e [ltail=cluster0];
d -> h;

}

a

b c

d

f

e

g

h

Figure 20: Graph with edges on clusters



dot User’s Manual, February 4, 2002 29

-Tjpg , in web pages to attach links to nodes and edges. The formatismap
is a predecessor of theimap format.

jpg JPEG output.jpeg is a synonym forjpg .

mif FrameMaker MIF format. In this format, graphs can be loaded into FrameMaker
and edited manually. MIF is limited to 8 basic colors.

mp MetaPost output.

pcl PCL-5 output for HP laser writers.

pic PIC output.

plain Simple, line-based ASCII format. Appendix B describes this output. An
alternate format isplain-ext , which provides port names on the head and
tail nodes of edges.

png PNG (Portable Network Graphics) output.

ps PostScript (EPSF) output.

ps2 PostScript (EPSF) output with PDF annotations. It is assumed that this output
will be distilled into PDF.

svg SVG output. The alternate formsvgz produces compressed SVG.

vrml VRML output.

vtx VTX format for r Confluents’s Visual Thought.

wbmp Wireless BitMap (WBMP) format.

-Gname=valuesets a graph attribute default value. Often it is convenient to set
size, pagination, and related values on the command line rather than in the graph
file. The analogous flags-N or -E set default node or edge attributes. Note that
file contents override command line arguments.

-l libfile specifies a device-dependent graphics library file. Multiple libraries
may be given. These names are passed to the code generator at the beginning of
output.

-o outfilewrites output into fileoutfile.
-v requests verbose output. In processing large layouts, the verbose messages

may give some estimate ofdot’s progress.
-V prints the version number and exits.



dot User’s Manual, February 4, 2002 30

5 Miscellaneous

In the top-level graph heading, a graph may be declared astrict digraph .
This forbids the creation of self-arcs and multi-edges; they are ignored in the input
file.

Nodes, edges and graphs may have aURLattribute. In certain output formats
(ps2 , imap , ismap or svg ), this information is integrated in the output so that
nodes, edges and clusters become active links when displayed with the appropriate
tools. Typically, URLs attached to top-level graphs serve as base URLs, support-
ing relative URLs on components. When the output format isimap , a similar
processing takes place with theheadURL andtailURL attributes.

For certain formats (ps , fig , mif , mp, vtx or svg ), comment attributes
can be used to embed human-readable notations in the output.

6 Conclusions

dotproduces pleasing hierarchical drawings and can be applied in many settings.
Since the basic algorithms ofdot work well, we have a good basis for fur-

ther research into problems such as methods for drawing large graphs and on-line
(animated) graph drawing.

7 Acknowledgments

We thank Emden Gansner and Phong Vo for their advice about graph drawing al-
gorithms and programming. The graph library uses Phong’s splay tree dictionary
library. Also, the users ofdag, the predecessor ofdot, gave us many good sug-
gestions. Emden Gansner, Guy Jacobson, and Randy Hackbarth reviewed earlier
drafts of this manual, and Emden contributed substantially to the current revision.
John Ellson wrote the generalized polygon shape and spent considerable effort to
make it robust and efficient. He also wrote the GIF and ISMAP generators and
other tools to bringgraphvizto the web.

References

[Car80] M. Carpano. Automatic display of hierarchized graphs for computer
aided decision analysis.IEEE Transactions on Software Engineering,
SE-12(4):538–546, April 1980.



dot User’s Manual, February 4, 2002 31

[GKNV93] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-Phong Vo. A Technique for Drawing Directed Graphs.IEEE
Trans. Sofware Eng., 19(3):214–230, May 1993.

[New89] Frances J. Newbery. Edge Concentration: A Method for Clustering
Directed Graphs. In2nd International Workshop on Software Con-
figuration Management, pages 76–85, October 1989. Published as
ACM SIGSOFT Software Engineering Notes, vol. 17, no. 7, Novem-
ber 1989.

[Nor92] Stephen C. North. Neato User’s Guide. Technical Report 59113-
921014-14TM, AT&T Bell Laboratories, Murray Hill, NJ, 1992.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Under-
standing of Hierarchical System Structures.IEEE Transactions on
Systems, Man, and Cybernetics, SMC-11(2):109–125, February 1981.

[War77] John Warfield. Crossing Theory and Hierarchy Mapping.IEEE Trans-
actions on Systems, Man, and Cybernetics, SMC-7(7):505–523, July
1977.



dot User’s Manual, February 4, 2002 32

A Graph File Grammar

The following is an abstract grammar for theDOT language. Terminals are shown
in bold font and nonterminals in italics. Literal characters are given in single
quotes. Parentheses ( and ) indicate grouping when needed. Square brackets [
and ] enclose optional items. Vertical bars| separate alternatives.

graph → [strict ] ( digraph | graph )id ’’ stmt-list’’
stmt-list → [stmt[’;’ ] [ stmt-list] ]
stmt → attr-stmt| node-stmt| edge-stmt| subgraph| id ’=’ id
attr-stmt → (graph | node| edgeattr-list
attr-list → ’[’ [ a-list ]’]’ [ attr-list ]
a-list → id ’=’ id[’,’ ][ attr-list ]
node-stmt → node-id[ attrs-list ]
node-id → id [port ]
port → port-location[port-angle]| port-angle[port-location]
port-location → ’:’ id | ’:’ ’(’ id ’,’ id ’)’
port-angle → ’@’ id
edge-stmt → (node-id| subgraph) edgeRHS[attr-list ]
edgeRHS → edgeop(node-id| subgraph) [edgeRHS]
subgraph → [subgraph id ]’’ stmt-list’’ | subgraph id

An id is any alphanumeric string not beginning with a digit, but possibly in-
cluding underscores; or a number; or any quoted string possibly containing escaped
quotes.

An edgeopis -> in directed graphs and-- in undirected graphs.
The language supports C++-style comments:/* */ and// .
Semicolons aid readability but are not required except in the rare case that a

named subgraph with no body immediate precedes an anonymous subgraph, be-
cause under precedence rules this sequence is parsed as a subgraph with a heading
and a body.

Complex attribute values may contain characters, such as commas and white
space, which are used in parsing theDOT language. To avoid getting a parsing
error, such values need to be enclosed in double quotes.



dot User’s Manual, February 4, 2002 33

B Plain Output File Format ( -Tplain )

The “plain” output format ofdot lists node and edge information in a simple, line-
oriented style which is easy to parse by front-end components. All coordinates and
lengths are unscaled and in inches.
The first line is:

graph scalefactor width height
The width and height values give the width and the height of the drawing; the
lower-left corner of the drawing is at the origin. Thescalefactorindicates how
much to scale all coordinates in the final drawing.
The next group of lines lists the nodes in the format:

node name x y xsize ysize label style shape color fillcolor
The nameis a unique identifier. If it contains whitespace or punctuation, it is
quoted. Thex andy values give the coordinates of the center of the node; thewidth
andheightgive the width and the height. The remaining parameters provide the
node’slabel , style , shape , color andfillcolor attributes, respectively.
If the node does not have astyle attribute,"solid" is used.
The next group of lines lists edges:

edge tail headn x1 y1 x2 y2 . . . xn yn [ label lx ly ] style color
n is the number of coordinate pairs that follow as B-spline control points. If the
edge is labeled, then the label text and coordinates are listed next. The edge de-
scription is completed by the edge’sstyle and color . As with nodes, if a
style is not defined,"solid" is used.
The last line is always:

stop



dot User’s Manual, February 4, 2002 34

C Attributed DOT Format (-Tdot )

This is the default output format. It reproduces the input, along with layout infor-
mation for the graph. Coordinate values increase up and to the right. Positions
are represented by two integers separated by a comma, representing theX andY
coordinates of the location specified in points (1/72 of an inch). A position refers
to the center of its associated object. Lengths are given in inches.

A bb attribute is attached to the graph, specifying the bounding box of the
drawing. If the graph has a label, its position is specified by thelp attribute.

Each node getspos , width andheight attributes. If the node is a record,
the record rectangles are given in therects attribute. If the node is polygonal
and thevertices attribute is defined in the input graph, this attribute contains
the vertices of the node. The number of points produced for circles and ellipses is
governed by thesamplepoints attribute.

Every edge is assigned apos attribute, which consists of a list of3n + 1
locations. These are B-spline control points: pointsp0, p1, p2, p3 are the first Bezier
spline,p3, p4, p5, p6 are the second, etc. Currently, edge points are listed top-to-
bottom (or left-to-right) regardless of the orientation of the edge. This may change.

In the pos attribute, the list of control points might be preceded by a start
pointps and/or an end pointpe. These have the usual position representation with a
"s," or "e," prefix, respectively. A start point is present if there is an arrow atp0.
In this case, the arrow is fromp0 to ps, whereps is actually on the node’s boundary.
The length and direction of the arrowhead is given by the vector(ps− p0). If there
is no arrow,p0 is on the node’s boundary. Similarly, the pointpe designates an
arrow at the other end of the edge, connecting to the last spline point.

If the edge has a label, the label position is given inlp .



dot User’s Manual, February 4, 2002 35

D Layers

dothas a feature for drawing parts of a single diagram on a sequence of overlapping
“layers.” Typically the layers are overhead transparencies. To activate this feature,
one must set the top-level graph’slayers attribute to a list of identifiers. A node
or edge can then be assigned to a layer or range of layers using itslayer attribute..
all is a reserved name for all layers (and can be used at either end of a range, e.g
design:all or all:code ). For example:

layers = "spec:design:code:debug:ship";
node90 [layer = "code"];
node91 [layer = "design:debug"];
node90 -> node91 [layer = "all"];
node92 [layer = "all:code"];

In this graph,node91 is in layersdesign , code anddebug , while node92 is
in layersspec , design andcode .

In a layered graph, if a node or edge has no layer assignment, but incident
edges or nodes do, then its layer specification is inferred from these. To change the
default so that nodes and edges with no layer appear on all layers, insert near the
beginning of the graph file:

node [layer=all];
edge [layer=all];

There is currently no way to specify a set of layers that are not a continuous
range.

When PostScript output is selected, the color sequence for layers is set in the
array layercolorseq . This array is indexed starting from 1, and every ele-
ment must be a 3-element array which can interpreted as a color coordinate. The
adventurous may learn further from readingdot’s PostScript output.



dot User’s Manual, February 4, 2002 36

E Node Shapes

box polygon ellipse circle

plaintext

point egg triangle plaintext

diamond trapezium parallelogram house

hexagon octagon doublecircle doubleoctagon

tripleoctagon invtriangle invtrapezium invhouse

Mdiamond Msquare Mcircle

1
2
3

2
31

32

1
2
3

2
31

32

record Mrecord



dot User’s Manual, February 4, 2002 37

F Arrowhead Types

normal dot odot

inv invdot invodot

none



dot User’s Manual, February 4, 2002 38

G Color Names
Whites Reds Yellows turquoise[1-4]
antiquewhite[1-4] coral[1-4] darkgoldenrod[1-4]
azure[1-4] crimson gold[1-4] Blues
bisque[1-4] darksalmon goldenrod[1-4] aliceblue
blanchedalmond deeppink[1-4] greenyellow blue[1-4]
cornsilk[1-4] firebrick[1-4] lightgoldenrod[1-4] blueviolet
floralwhite hotpink[1-4] lightgoldenrodyellow cadetblue[1-4]
gainsboro indianred[1-4] lightyellow[1-4] cornflowerblue
ghostwhite lightpink[1-4] palegoldenrod darkslateblue
honeydew[1-4] lightsalmon[1-4] yellow[1-4] deepskyblue[1-4]
ivory[1-4] maroon[1-4] yellowgreen dodgerblue[1-4]
lavender mediumvioletred indigo
lavenderblush[1-4] orangered[1-4] Greens lightblue[1-4]
lemonchiffon[1-4] palevioletred[1-4] chartreuse[1-4] lightskyblue[1-4]
linen pink[1-4] darkgreen lightslateblue[1-4]
mintcream red[1-4] darkolivegreen[1-4] mediumblue
mistyrose[1-4] salmon[1-4] darkseagreen[1-4] mediumslateblue
moccasin tomato[1-4] forestgreen midnightblue
navajowhite[1-4] violetred[1-4] green[1-4] navy
oldlace greenyellow navyblue
papayawhip Browns lawngreen powderblue
peachpuff[1-4] beige lightseagreen royalblue[1-4]
seashell[1-4] brown[1-4] limegreen skyblue[1-4]
snow[1-4] burlywood[1-4] mediumseagreen slateblue[1-4]
thistle[1-4] chocolate[1-4] mediumspringgreen steelblue[1-4]
wheat[1-4] darkkhaki mintcream
white khaki[1-4] olivedrab[1-4] Magentas
whitesmoke peru palegreen[1-4] blueviolet

rosybrown[1-4] seagreen[1-4] darkorchid[1-4]
Greys saddlebrown springgreen[1-4] darkviolet
darkslategray[1-4] sandybrown yellowgreen magenta[1-4]
dimgray sienna[1-4] mediumorchid[1-4]
gray tan[1-4] Cyans mediumpurple[1-4]
gray[0-100] aquamarine[1-4] mediumvioletred
lightgray Oranges cyan[1-4] orchid[1-4]
lightslategray darkorange[1-4] darkturquoise palevioletred[1-4]
slategray[1-4] orange[1-4] lightcyan[1-4] plum[1-4]

orangered[1-4] mediumaquamarine purple[1-4]
Blacks mediumturquoise violet
black paleturquoise[1-4] violetred[1-4]


